Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084213    DOI: 10.1088/1674-1056/24/8/084213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Estimation of random errors for lidar based on noise scale factor

Wang Huan-Xue (王欢雪)a b, Liu Jian-Guo (刘建国)b, Zhang Tian-Shu (张天舒)b
a University of Chinese Academy of Sciences, Beijing 100049, China;
b Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

Estimation of random errors, which are due to shot noise of photomultiplier tube (PMT) or avalanche photodiode (APD) detectors, is very necessary in lidar observation. Due to the Poisson distribution of incident electrons, there still exists a proportional relationship between standard deviation and square root of its mean value. Based on this relationship, noise scale factor (NSF) is introduced into the estimation, which only needs a single data sample. This method overcomes the distractions of atmospheric fluctuations during calculation of random errors. The results show that this method is feasible and reliable.

Keywords:  atmospheric optics      lidar      random error      noise factor      noise scale factor  
Received:  07 December 2014      Revised:  19 March 2015      Accepted manuscript online: 
PACS:  42.68.-w (Atmospheric and ocean optics)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
Fund: 

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB05040300) and the National Natural Science Foundation of China (Grant No. 41205119).

Corresponding Authors:  Liu Jian-Guo     E-mail:  jgliu@aiofm.ac.cn

Cite this article: 

Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒) Estimation of random errors for lidar based on noise scale factor 2015 Chin. Phys. B 24 084213

[1] Fiocoo G and Smullin L D 1963 Nature 199 1275
[2] Chen G, Hua D X and Zhang Y K 2014 Acta Phys. Sin. 63 154204 (in Chinese)
[3] Sun X J, Yan W and Liu L 2014 Acta Phys. Sin. 63 140702 (in Chinese)
[4] Liu L, Li Y and Zhang C L 2014 Acta Phys. Sin. 63 140703 (in Chinese)
[5] Du J, Ren D M and Zhao W J 2013 Chin Phys. B 22 024211
[6] Su J, Hu H L and Zhao P T 2008 Chin. Phys. B 17 355
[7] Liu Z Y, Hunt W and Vaughan M 2006 Appl. Opt. 45 4437
[8] Liu Z and Sugimoto N 2002 Appl. Opt. 41 1750
[9] Kingston R H 1978 Detection of Optical and Infrared Rediation (Berlin: Springer) p. 10
[10] Tao Z M, Zhang Q Z and Fang X 2009 Acta Photon. Sin. 38 3279 (in Chinese)
[11] Oliver B M 1965 Proc. IEEE 53 436
[12] McIntyre R J 1972 IEEE Trans. Electron Dev. 19 703
[1] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[2] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[3] A scanning distortion correction method based on X- Y galvanometer Lidar system
Bao-Ling Qi(漆保凌), Chun-Hui Wang(王春晖), Dong-Bing Guo(郭东兵), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(4): 044206.
[4] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[5] Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
Guo-Dong Sun(孙国栋), Lai-An Qin(秦来安), Zai-Hong Hou(侯再红), Xu Jing(靖旭), Feng He(何枫), Feng-Fu Tan(谭逢富), Si-Long Zhang(张巳龙), Shou-Chuan Zhang(张守川). Chin. Phys. B, 2019, 28(2): 024213.
[6] Detection performance improvement of photon counting chirped amplitude modulation lidar with response probability correction
Yi-Fei Sun(孙怿飞), Zi-Jing Zhang(张子静), Li-Yuan Zhao(赵丽媛), Wei-Min Sun(孙伟民), Yuan Zhao(赵远). Chin. Phys. B, 2018, 27(9): 094213.
[7] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[8] Photon-counting chirped amplitude modulation lidar system using superconducting nanowire single-photon detector at 1550-nm wavelength
Hui Zhou(周慧), Yu-Hao He(何宇昊), Chao-Lin Lü(吕超林), Li-Xing You(尤立星), Zhao-Hui Li(李召辉), Guang Wu(吴光), Wei-Jun Zhang(张伟君), Lu Zhang(张露), Xiao-Yu Liu(刘晓宇), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2018, 27(1): 018501.
[9] Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination
Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉). Chin. Phys. B, 2015, 24(9): 094212.
[10] Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar
Zhao Ruo-Can (赵若灿), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Sun Dong-Song (孙东松), Han Yu-Li (韩於利), Shangguan Ming-Jia (上官明佳), Guo Jie (郭洁), Shu Zhi-Feng (舒志峰). Chin. Phys. B, 2015, 24(2): 024218.
[11] V-L decomposition of a novel full-waveform lidar system based on virtual instrument technique
Xu Fan (徐帆), Wang Yuan-Qing (王元庆). Chin. Phys. B, 2015, 24(10): 104214.
[12] Scattering of a general partially coherent beam from a diffuse target in atmospheric turbulence
Wang Li-Guo (王利国), Wu Zhen-Sen (吴振森), Wang Ming-Jun (王明军), Cao Yun-Hua (曹运华), Zhang Geng (张耿). Chin. Phys. B, 2014, 23(9): 094202.
[13] Theoretical description of improving measurement accuracy for incoherence Mie Doppler wind lidar
Du Jun (杜军), Ren De-Ming (任德明), Zhao Wei-Jiang (赵卫疆), Qu Yan-Chen (曲彦臣), Chen Zhen-Lei (陈振雷), Geng Li-Jie (耿利杰 ). Chin. Phys. B, 2013, 22(2): 024211.
[14] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[15] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang (王杨), Li Ang (李昂), Xie Pin-Hua (谢品华), Zeng Yi (曾议), Wang Rui-Bin (王瑞斌), Chen Hao (陈浩), Pei Xian (裴显), Liu Jian-Guo (刘建国), and Liu Wen-Qing (刘文清 ). Chin. Phys. B, 2012, 21(11): 114211.
No Suggested Reading articles found!