Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 083701    DOI: 10.1088/1674-1056/24/8/083701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Atomic motion in the magneto–optical trap consisting of partially spatially coherent laser

Zhang Bao-Wu (张宝武)a b, Wang Zhao-Ying (王兆英)a, Kong De-Long (孔德龙)a, Lin Qiang (林强)a c
a Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China;
b College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
c Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

Rb atom motion in a magneto–optical trap (MOT) consisting of a partially spatially coherent laser (PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories; however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.

Keywords:  MOT      the partially spatially coherent laser      Rb  
Received:  21 January 2015      Revised:  30 April 2015      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  42.25.Kb (Coherence)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the National High-Technology Research and Development Program of China (Grant No. 2011AA060504), and the National Key Basic Research Program of China (Grant No. 2013CB329501).

Corresponding Authors:  Wang Zhao-Ying, Lin Qiang     E-mail:  zhaoyingwang@zju.edu.cn;qlin@zju.edu.cn

Cite this article: 

Zhang Bao-Wu (张宝武), Wang Zhao-Ying (王兆英), Kong De-Long (孔德龙), Lin Qiang (林强) Atomic motion in the magneto–optical trap consisting of partially spatially coherent laser 2015 Chin. Phys. B 24 083701

[1] Zhang B W, Zhi L X and Zhang W T 2012 Acta Phys. Sin. 61 183201 (in Chinese)
[2] Ruan J 2012 "Realization and research on related key technique for time-keeping cesium fountain clock", Ph. D. Dissertation (Xi'an: National Time Service Center, Chinese Academy of Sciences) (in Chinese)
[3] Li T, Wei R, Shi C Y, Zhou Z C, Lu D S and Wang Y Z 2010 Chin. Phys. Lett. 27 083201
[4] Zheng B C, Cheng H D, Meng Y L, Xiao L, Wan J Y and Liu L 2013 Chin. Phys. Lett. 30 123701
[5] Han S L 2010 "Research on Raman-pulse-assisted Atom Inerferometer", Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[6] Wang X L, Cheng B, Wu B, Wang Z Y and Lin Q 2011 Chin. Phys. Lett. 28 053701
[7] Yang W, Sun D L, Zhou L, Wang J and Zhan M S 2014 Acta Phys. Sin. 63 153701 (in Chinese)
[8] Du J J, Liang J J and Liang J Q 2014 Chin. Phys. B 23 020308
[9] Zheng B C, Cheng H D, Meng Y L, Xiao L, Wan J Y and Liu L 2014 Chin. Phys. Lett. 31 073701
[10] Chen G J, Zhou Q Q, Ji X M and Yin J P 2014 Acta Phys. Sin. 63 083701 (in Chinese)
[11] Lu H C, Zhai Y Y, Pan R Z and Yang S F 2014 Chin. Phys. B 23 093701
[12] Meng Y L, Cheng H D, Zheng B C, Wang X C, Xiao L and Liu L 2013 Chin. Phys. Lett. 30 063701
[13] Lu J F, Zhou Q, Pan X Q and Yin J P 2013 Acta Phys. Sin. 62 233701 (in Chinese)
[14] Metcalf H J and Van Ver Straten P 1999 Laser Cooling and Traping (New York: Springer-Verlag) p. 219
[15] Huang Y P, Zhao G P, Xiao X and Wang F H 2012 Acta Phys. Sin. 61 144202 (in Chinese)
[16] Dawid B, Maciej N and Maciej W 2013 Opt. Lett. 38 4817
[17] Zhang J F, Wang Z Y, Cheng B, Wang Q Y, Wu B, Shen X X, Zheng L L, Xu Y F and Lin Q 2013 Phys. Rev. A 88 023416
[18] Lin Q and Wang L G 2009 J. Mod. Opt. 50 743
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[6] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[7] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[8] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[9] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[10] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[11] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[12] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[13] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[14] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[15] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
No Suggested Reading articles found!