Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070201    DOI: 10.1088/1674-1056/24/7/070201
GENERAL   Next  

A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

Shen Yang-Wu (沈阳武)a, Ke De-Ping (柯德平)a, Sun Yuan-Zhang (孙元章)a, Daniel Kirschenb, Wang Yi-Shen (王轶申)b, Hu Yuan-Chao (胡元朝)a
a School of Electrical Engineering, Wuhan University, Wuhan 430072, China;
b Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
Abstract  A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
Keywords:  doubly-fed induction generator      transient rotor current control      superconducting magnetic energy storage      voltage support  
Received:  10 October 2014      Revised:  28 January 2015      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  88.80.fj (Superconducting magnetic energy storage)  
  88.50.-k (Wind energy)  
  84.60.-h (Direct energy conversion and storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).
Corresponding Authors:  Ke De-Ping     E-mail:  kedeping@whu.edu.cn

Cite this article: 

Shen Yang-Wu (沈阳武), Ke De-Ping (柯德平), Sun Yuan-Zhang (孙元章), Daniel Kirschen, Wang Yi-Shen (王轶申), Hu Yuan-Chao (胡元朝) A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support 2015 Chin. Phys. B 24 070201

[1] Zhao H, Ma Y J and Liu S J 2011 Chin. Phys. B 20 12501
[2] Gholizadeh H, Hassannia A and Azarfar A 2012 Chin. Phys. B 21 010503
[3] Wei D Q and Luo X S 2008 Chin. Phys. B 17 92
[4] Messadi M, Mellit A and Kemih K 2015 Chin. Phys. B 24 010502
[5] Zheng G, Zou J X and Xu H B 2011 Acta Phys. Sin. 60 060506 (in Chinese)
[6] Yu Y, Mi Z Q and Liu X J 2011 Acta Phys. Sin. 60 070509 (in Chinese)
[7] Li D, Wang S L and Yang D 2010 Chin. Phys. B 19 010506
[8] Ren L N, Liu F C and Jiao X H 2012 Acta Phys. Sin. 61 060506 (in Chinese)
[9] Yang G L and Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese)
[10] Liu Y S, Farnell C, Balda J C and Mantooth H A 2015 Proceeding of IEEE Applied Power Electronics Conference and Exposition, March 15-19, 2015, Charlotte, USA, p. 697
[11] Zhang X Q and Liang J 2012 Acta Phys. Sin. 61 19050 (in Chinese)
[12] Xiao S, Yang G, Zhou H L and Geng H 2013 IEEE Trans. Ind. Electron. 60 2820
[13] Lopez J, Gubia E and Olea E 2009 IEEE Trans. Ind. Electron. 56 4246
[14] Meegahapola L G, Littler T and Flynn D 2010 IEEE Trans. Sustainable Energy 1 152
[15] Abbey C and Joos G 2007 IEEE Trans. Ind. Appl. 43 769
[16] Vrionis T D, Koutiva X I, Vovos N A 2014 IEEE Trans. Power Syst. 29 1325
[17] Kasem A H, EI-Saadany E F and EI-Tamaly H H 2008 IET Renew. Power Gener. 2 201
[18] Mokryani G, Siano P and Piccolo A 2013 IEEE System Journal 7 714
[19] Mohseni M and Islam S M 2012 IEEE Trans. Power Electron. 27 2813
[20] Xie D L, Xu Z and Yang L H 2013 IEEE Trans. Power Syst. 28 3302
[21] Margaris I D, Papathanassiou S A and Hatziargyriou N D 2012 IEEE Trans. Sustain. Energy 3 189
[22] Bozhko S, Gimenez R B and Li R S 2007 IEEE Trans. Energy Convers. 22 71
[23] Zhang K, Miao C and Lu J 2014 IET Renew. Power Geneer 8 58
[24] Yunus A M, Masoum M A and Siada A A 2012 IEEE Trans. Appl. Supercond. 22 5702009
[25] Shen Y W, Peng X T and Yang J 2011 Electric. Power Automation Equipment 31 28
[26] Zhang W Y, Li Y L and Chang X Y 2013 Chin. Phys. B 22 098401
[27] Nomura S, Shintomi T and Akita S 2010 IEEE Trans. Appl. Supercond. 20 1373
[28] Karasik K, Dixon K and Weber C 1999 IEEE Trans. Appl. Supercond. 9 541
[29] Yao J, Li H and Liao Y 2008 IEEE Trans. Power Electron. 23 1205
[30] Xiang D W, Ran L and Tavner P J 2006 IEEE Trans. Energy Convers. 21 652
[31] Liu Y S, Farnell C, Balda J C and Mantooth H A 2014 Proceeding of IEEE Energy Conversion Congress and Exposition, September 14-18, 2014, Pittsburgh, USA, p. 964
[32] Rahimi M and Pamiani M 2010 IEEE Trans. Energy Convers. 25 514
[33] Liu Y S, Farnell C, Balda J C and Mantooth H A 2014 Proceeding of IEEE m5th International Symposium on Power electronic for Distributed Generation Systems, June 24-27, 2014, Galway, Ireland, p. 1
[34] Zhou G H, Bao B C and Xu J P 2010 Chin. Phys. B 19 050509
[35] Yang N N, Liu C X and Wu C J 2012 Chin. Phys. B 21 080503
[36] Qu L Y and Qiao W 2011 IEEE Trans. Ind. Appl. 47 359
[37] Yang L H, Xu Z and Ostergaard J 2012 IEEE Trans. Power Syst. 27 713
[38] Shen Y W, Peng X T and Sun Y Z 2012 Electric. Power Automation Equipment 36 146
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[10] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[11] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[12] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[13] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林) and Shao-Peng Pang(庞少鹏)†. Chin. Phys. B, 2020, 29(10): 100202.
[14] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[15] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
No Suggested Reading articles found!