Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070202    DOI: 10.1088/1674-1056/24/7/070202
GENERAL Prev   Next  

Stochastic stability of the derivative unscented Kalman filter

Hu Gao-Ge (胡高歌)a, Gao She-Sheng (高社生)a, Zhong Yong-Min (种永民)b, Gao Bing-Bing (高兵兵)a
a School of Automatics, Northwestern Polytechnical University, Xi'an 710072, China;
b School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia
Abstract  This is the second of two consecutive papers focusing on the filtering algorithm for a nonlinear stochastic discrete-time system with linear system state equation. The first paper established a derivative unscented Kalman filter (DUKF) to eliminate the redundant computational load of the unscented Kalman filter (UKF) due to the use of unscented transformation (UT) in the prediction process. The present paper studies the error behavior of the DUKF using the boundedness property of stochastic processes. It is proved that the estimation error of the DUKF remains bounded if the system satisfies certain conditions. Furthermore, it is shown that the design of the measurement noise covariance matrix plays an important role in improvement of the algorithm stability. The DUKF can be significantly stabilized by adding small quantities to the measurement noise covariance matrix in the presence of large initial error. Simulation results demonstrate the effectiveness of the proposed technique.
Keywords:  nonlinear stochastic system      stochastic process      unscented Kalman filter      stochastic stability  
Received:  28 October 2014      Revised:  15 January 2015      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  02.50.Ey (Stochastic processes)  
  02.50.Fz (Stochastic analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61174193) and the Doctorate Foundation of Northwestern Polytechnical University, China (Grant No. CX201409).
Corresponding Authors:  Hu Gao-Ge     E-mail:  hugaoge1111@126.com

Cite this article: 

Hu Gao-Ge (胡高歌), Gao She-Sheng (高社生), Zhong Yong-Min (种永民), Gao Bing-Bing (高兵兵) Stochastic stability of the derivative unscented Kalman filter 2015 Chin. Phys. B 24 070202

[1] Hu G G, Gao S S and Zhong Y M 2015 ISA T. 56 135
[2] Julier S J and Uhlmann J K 2004 Proc. IEEE 92 401
[3] Zhang Z T and Zhang J S 2010 Chin. Phys. B 19 104601
[4] Zhan R H and Wan J W 2007 IEEE T. Aero. Elec. Sys. 43 1155
[5] Shi Y and Han C Z 2011 Acta Autom. Sin. 37 755 (in Chinese)
[6] Xiong K, Liu L D and Zhang H Y 2009 Aerosp. Sci. Technol. 13 238
[7] Gao S S, Hu G G and Zhong Y M 2015 Int. J. Adapt. Control 29 201
[8] Li W and Leung H 2004 IEEE T. Intell. Transp. 5 84
[9] Liu X, Gao Q and Li X L 2014 Chin. Phys. B 23 010202
[10] Wang W, Liu Z Y and Xie R R 2006 Aerosp. Sci. Technol. 10 709
[11] Boutayeb M, Rafaralahy H and Darouach M 1997 IEEE T. Automat. Contr. 42 581
[12] Boutayeb M and Aubry D 1999 IEEE T. Automat. Contr. 44 1550
[13] Xiong K, Zhang H Y and Chan C W 2006 Automatica 42 261
[14] Xiong K, Zhang H Y and Chan C W 2007 Automatica 43 569
[15] Sarkka S 2007 IEEE T. Automat. Contr. 52 1631
[16] Xu J H, Wang S, Dimirovski G M and Jing Y W 2008 47th IEEE Conference on Decision and Control, December 9-11, 2008 Cancun, Mexico, p. 5110
[17] Li L and Xia Y Q 2012 Automatica 48 978
[18] Reif K, Gunther S, Yaz E and Unbehauen R 1999 IEEE T. Automat. Contr. 44 714
[19] Julier S J, Uhlmann J K and Durrant-Whyte H F 2000 IEEE T. Automat. Contr. 45 477
[20] Deyst J and Price C 1968 IEEE T. Automat. Contr. 13 702
[21] Anderson B D O and Moore J B 1981 SIAM J. Control Optim. 19 20
[22] Arshal G 1987 J. Guid. Control Dynam. 10 351
[23] Farrell J and Barth M 1999 The Global Positioning System and Inertial Navigation (New York: McGraw-Hill) p. 12
[24] Qin Y Y 2006 Inertial Navigation (Beijing: Science Press) p. 231 (in Chinese)
[25] Ge Q B, Li W B and Wen C L 2011 J. Zhejiang Univ. Sci. C 12 678
[1] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[2] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[3] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[4] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
[5] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[6] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[7] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
[8] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[9] Control of epileptiform spikes based on nonlinear unscented Kalman filter
Liu Xian (刘仙), Gao Qing (高庆), Li Xiao-Li (李小俚). Chin. Phys. B, 2014, 23(1): 010202.
[10] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[11] Multi-agent coordination in directed moving neighbourhood random networks
Shang Yi-Lun (尚轶伦). Chin. Phys. B, 2010, 19(7): 070201.
[12] Random-phase-induced chaos in power systems
Qin Ying-Hua(覃英华), Luo Xiao-Shu(罗晓曙), and Wei Du-Qu(韦笃取). Chin. Phys. B, 2010, 19(5): 050511.
[13] Stochastic systems with cross-correlated Gaussian white noises
Wang Cheng-Yu(王成玉), Gao Yun(高云), Song Yu-Min(宋玉敏), Zhou Peng(周鹏), and Yang Hai(杨海). Chin. Phys. B, 2010, 19(11): 116401.
[14] Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking
Zhang Zu-Tao(张祖涛) and Zhang Jia-Shu(张家树). Chin. Phys. B, 2010, 19(10): 104601.
[15] A stochastic epidemic model on homogeneous networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯) . Chin. Phys. B, 2009, 18(12): 5111-5116.
No Suggested Reading articles found!