CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride |
Wei Jiang-Bin (魏江镔)a, Chi Xiao-Wei (池晓伟)a, Lu Chao (陆超)a, Wang Chen (王尘)a, Lin Guang-Yang (林光杨)a, Wu Huan-Da (吴焕达)a, Huang Wei (黄巍)a, Li Cheng (李成)a, Chen Song-Yan (陈松岩)a, Liu Chun-Li (刘春莉)b |
a Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China; b Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, Korea |
|
|
Abstract Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.
|
Received: 22 December 2014
Revised: 02 February 2015
Accepted manuscript online:
|
PACS:
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
73.40.Ei
|
(Rectification)
|
|
73.61.At
|
(Metal and metallic alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176092 and 61474094), the National Basic Research Program of China (Grant Nos. 2012CB933503 and 2012CB632103), and the National Natural Science Foundation of China-National Research Foundation of Korea Joint Research Project (Grant No. 11311140251). |
Corresponding Authors:
Huang Wei, Li Cheng
E-mail: weihuang@xmu.edu.cn;lich@xmu.edu.cn
|
Cite this article:
Wei Jiang-Bin (魏江镔), Chi Xiao-Wei (池晓伟), Lu Chao (陆超), Wang Chen (王尘), Lin Guang-Yang (林光杨), Wu Huan-Da (吴焕达), Huang Wei (黄巍), Li Cheng (李成), Chen Song-Yan (陈松岩), Liu Chun-Li (刘春莉) Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride 2015 Chin. Phys. B 24 077306
|
[1] |
Hashemi P, Chern W, Lee H S, Teherani J T, Zhu Y, Gonsalvez J, Shahidi G G and Hoyt J L 2012 IEEE Electron Device Lett. 33 943
|
[2] |
Koike M, Kamata Y, Ino T, Hagishima D, Tatsumura K, Koyama M and Nishiyama A 2008 J. Appl. Phys. 104 023523
|
[3] |
Dimoulas A, Tsipas P, Sotiropoulos A and Evangelou E K 2006 Appl. Phys. Lett. 89 252110
|
[4] |
Lin J Y J, Roy A M, Nainani A, Sun Y and Saraswat K C 2011 Appl. Phys. Lett. 98 092113
|
[5] |
Gajula D R, Baine P, Modreanu M, Hurley P K, Armstrong B M and McNeill D M 2014 Appl. Phys. Lett. 104 012102
|
[6] |
Nishimura T, Kita K and Toriumi A 2008 Appl. Phys. Express 1 051406
|
[7] |
Kobayashi M, Kinoshita A, Saraswat K, Wong H S P and Nishi Y 2009 J. Appl. Phys. 105 023702
|
[8] |
Liu H H, Wang P, Qi D F, Li X, Han X, Wang C, Chen S Y, Li C and Huang W 2014 Appl. Phys. Lett. 105 192103
|
[9] |
Ikeda K, Yamashita Y, Sugiyama N, Taoka N and Takagi S I 2006 Appl. Phys. Lett. 88 152115
|
[10] |
Tong Y, Liu B, Lim P S Y and Yeo Y C 2012 Electron Dev. Lett. 33 773
|
[11] |
Koike M, Kamimuta Y and Tezuka T 2011 Appl. Phys. Express 4 021301
|
[12] |
Wu H D, Huang W, Lu W F, Tang R F, Li C, Lai H K, Chen S Y and Xue C L 2013 Appl. Surf. Sci. 284 877
|
[13] |
Wu Z, Huang W, Li C, Lai H K and Chen S Y 2012 IEEE Trans. Electron Dev. 59 1328
|
[14] |
ICDD card No. 025-1257
|
[15] |
Addonizio M L, Castaldo A, Antonaia A, Gambale E and Iemmo L 2012 J. Vac. Sci. Technol. A 30 031506
|
[16] |
Jiang P C, Lai Y S and Chen J S 2006 Appl. Phys. Lett. 89 122107
|
[17] |
Nishimura T, Kita K and Toriumi A 2007 Appl. Phys. Lett. 91 123123
|
[18] |
Zhou Y, Han W, Wang Y, Xiu F, Zou J, Kawakami R and Wang K 2010 Appl. Phys. Lett. 96 102103
|
[19] |
Wu H D, Wang C, Wei J B, Huang W, Li C, Lai H K, Li J, Liu C L and Chen S Y 2014 IEEE Electron Device Lett. 35 1188
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|