CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Fermi level pinning effects at gate-dielectric interfaces influenced by interface state densities |
Hong Wen-Ting (洪文婷), Han Wei-Hua (韩伟华), Lyu Qi-Feng (吕奇峰), Wang Hao (王昊), Yang Fu-Hua (杨富华) |
Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor (MOS) technology.
|
Received: 27 April 2015
Revised: 26 May 2015
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 11234007). |
Corresponding Authors:
Han Wei-Hua
E-mail: weihua@semi.ac.cn
|
Cite this article:
Hong Wen-Ting (洪文婷), Han Wei-Hua (韩伟华), Lyu Qi-Feng (吕奇峰), Wang Hao (王昊), Yang Fu-Hua (杨富华) Fermi level pinning effects at gate-dielectric interfaces influenced by interface state densities 2015 Chin. Phys. B 24 107306
|
[1] |
Jossel E and Skotnicki T 1999 International Electron Device Meeting Technical Digest, December 5, 1999, Grenoble, France, p. 661
|
[2] |
Hwang J M and Pollack G 1992 International Electron Device Meeting Technical Digest, December 13, 1992, San Francisco, USA, p. 345
|
[3] |
Heine V 1965 Phys. Rev. 138 1689
|
[4] |
Mönch W 1996 J. Vac. Sci. Technol. B 14 2985
|
[5] |
Mönch W 1987 Phys. Rev. Lett. 58 1260
|
[6] |
Wang X L, Wang W W, Han K, Yang H, Zhang J, Ma X L, Xiang J J, Zhao C, Chen D P and Ye T C 2012 Junction Technology, May 14, 2012, Shanghai, China, p. 176
|
[7] |
Yeo Y C, King T J and Hu C M 2002 IEEE Electron Dev. Lett. 23 342
|
[8] |
Yeo Y C, King T J and Hu C M 2002 J. Appl. Phys. 92 7266
|
[9] |
Wen H C, Majhi P, Choi K, Park C S, Alshareef H N, Harris H R, Luan H, Niimi H, Park H B, Bersuker G, Lysaght P S, Kwong D L, Song S C, Lee B H and Jammy R 2008 Microelectron. Eng. 85 2
|
[10] |
Huang A P, Zhang X H, Xiao Z S, Yang Z C, Wang M, Chu P K and Yang X D 2011 Chin. Phys. B 20 097303
|
[11] |
Yang Z C, Huang A P, Zheng X H, Xiao Z S, Liu X Y, Zhang X W, Chu P K and Wang W W 2010 IEEE Electron Dev. Lett. 31 1101
|
[12] |
Schaeffer J K, Fonseca L R C, Samavedam S B, Liang Y, Tobin P J and White B E 2004 Appl. Phys. Lett. 85 1826
|
[13] |
Robertson J, Sharia O and Demkov A A 2007 Appl. Phys. Lett. 91 132912
|
[14] |
Robertson J, Guo Y and Lin L 2015 J. Appl. Phys. 117 112806
|
[15] |
Li Z L, Houssa M, Schram T, De Gendt S and De Meryer K 2009 Appl. Phys. Lett. 95 183506
|
[16] |
Tersoff J 1984 Phys. Rev. B 30 4874
|
[17] |
Tung R T 2000 Phys. Rev. Lett. 84 6078
|
[18] |
Lince J R, Carre D J and Fleischauer P D 1987 Phys. Rev. B 36 1647
|
[19] |
Lin D W, Wang M, Cheng M L, Sheu Y M, Tarng B, Chu C M, Nieh C W, Lo C P, Tsai W C, Lin R, Wang S W, Cheng K L, Wu C M, Lei M T, Wu C C, Diaz C H and Chen M J 2008 IEEE Electron Dev. Lett. 29 998
|
[20] |
Manabe K, Takahashi K, Ikarashi T, Morirka A, Watanabe H, Yoshihara T and Tatsumi T 2005 Jpn. J. Appl. Phys. 44 2205
|
[21] |
Park C S, Cho B J and Kwong D L 2004 IEEE Electron Dev. Lett. 25 372
|
[22] |
Zhu S, Chen J, Li M F, Lee S J, Nsingh J, Zhu C X, Du A, Tung C H, Chin A and Kwong D L 2004 IEEE Electron Dev. Lett. 25 565
|
[23] |
Kurtin S, McGill T C and Mead C A 1969 Phys. Rev. Lett. 22 1433
|
[24] |
Lin L, Guo Y and Robertson J 2012 Appl. Phys. Lett. 101 052110
|
[25] |
Mohiddon M A and Krishna M 2011 J. Mater. Sci. 46 2672
|
[26] |
Zhu S Y, Lo G Q and Kwong D L 2011 Opt. Express 19 15843
|
[27] |
Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
|
[28] |
Robertson J and Falabretti B 2006 J. Appl. Phys. 100 014111
|
[29] |
Sayan S, Garfunkel E and Suzer S 2002 Appl. Phys. Lett. 80 2135
|
[30] |
Xu Y N and Ching W Y 1995 Phys. Rev. B 51 379
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|