Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 066203    DOI: 10.1088/1674-1056/24/6/066203
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical properties of copper nanocube under three-axial tensile loadings

Yang Zai-Lin (杨在林), Zhang Guo-Wei (张国伟), Luo Gang (罗刚)
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  

The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stresses, and the relationships between them and strain are analyzed. Some concepts of the microscopic damage mechanics are introduced, which are the basis of studying the damage mechanical properties by molecular dynamics. The [100] nanocube exhibits homogeneity and isotropy and achieves a balance easily. The [110] nanocube presents transverse isotropy. The [111] nanocube shows the complexity and anisotropy because the orientation sizes in three directions are different. The broken point occurs on a surface, but the other two do not. The [100] orientation model will be an ideal model for studying the microscopic damage theory.

Keywords:  molecular dynamics      damage      three-axial tensile loading      isotropy  
Received:  12 November 2014      Revised:  07 January 2015      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  81.07.Nb (Molecular nanostructures)  
Corresponding Authors:  Yang Zai-Lin     E-mail:  yangzailin00@163.com
About author:  62.25.-g; 61.46.-w; 81.07.Nb

Cite this article: 

Yang Zai-Lin (杨在林), Zhang Guo-Wei (张国伟), Luo Gang (罗刚) Mechanical properties of copper nanocube under three-axial tensile loadings 2015 Chin. Phys. B 24 066203

[1] Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
[2] Frenkel D and Smit B 2001 Understanding Molecular Simulation: from Algorithms to Applications, Vol. 1 (Beijing: Science Press) pp. 18-86 (in Chinese)
[3] Gao Y, Wang H, Zhao J, Sun C and Wang F 2011 Comput. Mater. Sci. 50 3032
[4] Zhao J, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S and Liu H 2008 J. Phys. Chem. C 112 20088
[5] Liu Y, Zhao J and Wang F 2009 Phys. Rev. B 80 115417
[6] Huang D and Zhuo J S 2006 Computational Methods in Engineering and Science EPMESC X, August 21-23, 2006, Sanya, Hainan, China, p. 839
[7] Yokomizo K, Banno Y and Kotaki M 2012 Polymer 53 4280
[8] Liu Y and Zhao J 2011 Comput. Mater. Sci. 50 1418
[9] Zhao J, Hou J, Zhu T, Wang F, Liu Y and Yin X 2010 Comput. Mater. Sci. 47 962
[10] Potirniche G P, Horstemeyer M F, Wagner G J and Gullett P M 2006 Int. J. Plast. 22 257
[11] Hussain F, Hayat S S, Shah Z A, Hassan N and Ahmad S A 2013 Chin. Phys. B 22 096102
[12] Devanathan R, Corrales L R, Weber W J, Chartier A and Meis C 2005 Nucl. Instrum. Method Phys. Res. B 228 299
[13] Aoki T and Matsuo J 2006 Nucl. Instrum. Method Phys. Res. B 242 517
[14] Chen R, Liang M, Luo J, Lei H, Guo D and Hu X 2011 Appl. Surf. Sci. 258 1756
[15] Heino P 2007 Eur. Phys. J. B 60 171
[16] Zhang L, Jasa J, Gazonas G, Jérusalem A and Negahban M 2014 Comput. Methods Appl. Mech. Eng. 283 1010
[17] Shokrieh M M, Shokrieh Z and Hashemianzadeh S M 2014 Mater. Des. 64 96
[18] Li J, Fang Q, Liu Y and Zhang L 2014 Appl. Surf. Sci. 303 331
[19] Zhao J, Yin X, Liang S, Liu Y, Wang D, Deng S and Hou J 2008 Chem. Res. Chin. Univ. 24 367
[20] Johnson R A 1988 Phys. Rev. B 37 6121
[21] Johnson R A 1988 Phys. Rev. B 37 3924
[22] Johnson R A 1989 Phys. Rev. B 39 12554
[23] Long Z, Xu W and Tang L 2007 Molecular Simulation Theory and Practice, Vol. 1 (Beijing: Chemical Industry Press) pp. 79-81 (in Chinese)
[24] Wu H 2006 Eur. J. Mech. A-Solid 25 370
[25] Gurson A L 1977 J. Eng. Mater. Tech. 99 2
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[7] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[8] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[11] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[12] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[13] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[14] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[15] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
No Suggested Reading articles found!