Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054207    DOI: 10.1088/1674-1056/24/5/054207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

Zhao Mao-Rong (赵茂戎)a, Wu Zheng-Mao (吴正茂)a, Deng Tao (邓涛)a, Zhou Zhen-Li (周桢力)a, Xia Guang-Qiong (夏光琼)a b
a School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
b State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract  

Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented.

Keywords:  semiconductor laser      incoherent optical feedback      microwave frequency combs  
Received:  17 August 2014      Revised:  03 November 2014      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 11204248, 61475127, and 61275116), the Natural Science Foundation of Chongqing City, China (Grant Nos. 2012jjB40011 and 2012jjA40012), and the Open Fund of the State Key Lab of Millimeter Waves of China (Grant No. K201418).

Corresponding Authors:  Xia Guang-Qiong     E-mail:  gqxia@swu.edu.cn
About author:  42.55.Px; 42.65.Sf; 84.40.-x

Cite this article: 

Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼) Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback 2015 Chin. Phys. B 24 054207

[1] Simpson T B, Liu J M, Gavrielides A, Kovanis V and Alsing P M 1995 Phys. Rev. A 51 4181
[2] Wieczorek S, Krauskopf B and Lenstra D 1999 Opt. Commun. 172 279
[3] Qi X Q and Liu J M 2011 IEEE J. Quantum Electron. 47 762
[4] Mukai T and Otsuka K 1985 Phys. Rev. Lett. 55 1711
[5] Jafari A, Sedghi H, Mabhouti Kh and Behnia S 2011 Opt. Commun. 284 3018
[6] Soriano M C, Zunino L, Rosso O A, Fischer I and Mirasso C R 2011 IEEE J. Quantum Electron. 47 252
[7] Lin F Y and Liu J M 2003 Opt. Commun. 221 173
[8] Liao J F and Sun J Q 2013 Opt. Commun. 295 188
[9] Lin F Y and Liu J M 2003 IEEE J. Quantum Electron. 39 562
[10] Jia X H, Zhong D Z, Wang F and Chen H T 2007 Opt. Commun. 277 166
[11] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese)
[12] Zhong D Z, Deng T and Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)
[13] Yan S L 2013 Acta Phys. Sin. 62 230504 (in Chinese)
[14] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[15] Wu J G, Wu Z M, Fan L, Tang X, Deng W and Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[16] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2008 Nature Photon. 2 728
[17] Wu J G, Tang X, Wu Z M, Xia G Q and Feng G Y 2012 Laser Phys. 22 1476
[18] Xiao B J, Hou J Y, Zhang J Z, Xue L G and Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese)
[19] Li P, Wang Y C and Zhang J Z 2010 Opt. Express 18 20360
[20] Hwang S K, Chen H F and Lin C Y 2009 Opt. Lett. 34 812
[21] Chan S C, Hwang S K and Liu J M 2006 Opt. Lett. 31 2254
[22] Lin F Y and Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[23] Lin F Y and Liu J M 2004 IEEE J. Quantum Electron. 40 815
[24] Chow W W and Wieczorek S 2009 Opt. Express 17 7491
[25] Chan S C, Xia G Q and Liu J M 2007 Opt. Lett. 32 1917
[26] Juan Y S and Lin F Y 2009 Opt. Lett. 34 1636
[27] Ju R and Spencer P S 2005 J. Lightwave Technol. 23 2513
[28] Ping X X, Lin X D, Wu Z M, Wang L and Xia G Q 2010 Optoelectron. Adv. Mater.-Rap. Commun. 4 1095
[29] http://www.picosecond.com/objects/7112%20SPEC-4040120.pdf
[30] Chan S C and Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[6] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[7] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[8] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[9] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[10] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[11] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[12] Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers
Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨). Chin. Phys. B, 2015, 24(6): 064211.
[13] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[14] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[15] Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers
Yan Sen-Lin (颜森林). Chin. Phys. B, 2014, 23(9): 090503.
No Suggested Reading articles found!