Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054206    DOI: 10.1088/1674-1056/24/5/054206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable optical response in hybrid opto-electromechanical systems

Jiang Cheng (江成)a, Cui Yuan-Shun (崔元顺)a, Liu Hong-Xiang (刘洪香)a b, Li Xiao-Wei (李晓薇)a, Chen Gui-Bin (陈贵宾)a
a School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an 223300, China;
b School of Physics, Northeast Normal University, Jilin 130024, China
Abstract  

We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process.

Keywords:  electromagnetically induced absorption      amplification      hybrid opto-electromechanical system  
Received:  09 September 2014      Revised:  11 November 2014      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.25.Hz (Interference)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130413 and BK2011411), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB140002).

Corresponding Authors:  Jiang Cheng     E-mail:  chengjiang8402@163.com
About author:  42.50.Wk; 42.25.Hz

Cite this article: 

Jiang Cheng (江成), Cui Yuan-Shun (崔元顺), Liu Hong-Xiang (刘洪香), Li Xiao-Wei (李晓薇), Chen Gui-Bin (陈贵宾) Controllable optical response in hybrid opto-electromechanical systems 2015 Chin. Phys. B 24 054206

[1] Kippenberg T J and Vahala K J 2008 Science 321 1172
[2] Marquardt F and Girvin S M 2009 Physics 2 40
[3] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[4] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[5] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[6] Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[7] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 63
[8] Palomaki T A, Harlow J W, Teufel J D, Simmonds R W and Lehnert K W 2013 Nature 495 210
[9] Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 Phys. Rev. Lett. 101 263602
[10] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[11] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[12] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[13] Safavi-Naeini A H, Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[14] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[15] Shu J 2011 Chin. Phys. Lett. 28 104203
[16] Yan X B, Gu K H, Fu C B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
[17] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[18] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[19] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[20] Phillips M C, Wang H, Rumyantsev I, Kwong N H, Takayama R and Binder R 2003 Phys. Rev. Lett. 91 183602
[21] Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
[22] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R and Kippenberg T J 2013 Nat. Phys. 9 179
[23] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H L 2011 Phys. Rev. Lett. 107 133601
[24] Hocke F, Zhou X, Schliesser A, Kippenberg T J, Huebl H and Gross R 2012 New J. Phys. 14 123037
[25] Massel F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P and Sillanpää M A 2011 Nature 480 351
[26] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A and Steele G A 2014 Nat. Nanotech. 9 820
[27] Tian L and Wang H L 2010 Phys. Rev. A 82 053806
[28] Tian L 2012 Phys. Rev. Lett. 108 153604
[29] Hill J T, Safavi-Naeini A H, Chan J and Painter O 2012 Nat. Commun. 3 1196
[30] Barzanjeh S, Abdi M, Milburn G J, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 130503
[31] McGee S A, Meiser D, Regal C A, Lehnert K W and Holland M J 2013 Phys. Rev. A 87 053818
[32] Bochmann J, Vainsencher A, Awschalom D D and Cleland A N 2013 Nat. Phys. 9 712
[33] Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A and Lehnert K W 2014 Nat. Phys. 10 321
[34] Regal C A and Lehnert K W 2011 J. Phys. Conf. Ser. 264 012025
[35] Lü X Y, Zhang W M, Ashhab S, Wu Y and Nori F 2013 Sci. Rep. 3 2943
[36] Li H K, Ren X X, Liu Y C and Xiao Y F 2013 Phys. Rev. A 88 053850
[37] Qu K N and Agarwal G S 2013 Phys. Rev. A 87 031802(R)
[38] Nunnenkamp A, Sudhir V, Feofanov A K, Roulet A and Kippenberg T J 2014 Phys. Rev. Lett. 113 023604
[39] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 59 4732
[40] Metelmann A and Clerk A A 2014 Phys. Rev. Lett. 112 133904
[41] Ma J Y, You C, Si L G, Xiong H, Yang X X and Wu Y 2014 Opt. Lett. 39 4180
[42] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[43] Xiong H, Si L G, Zheng A S, Yang X X and Wu Y 2012 Phys. Rev. A 86 013815
[44] Boyd R W 2008 Nonlinear Optics (San Diego, CA: Academic)
[45] Gardiner C W and Zoller P 2004 Quantum Noise (Springer)
[46] Chen B, Jiang C, Li J J and Zhu K D 2011 Phys. Rev. A 84 055802
[1] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[2] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[5] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[6] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[7] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[8] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[9] Statistics of states generated by quantum-scissors device
Ming-Hao Wang(王明浩), Guo-An Yan(闫国安). Chin. Phys. B, 2019, 28(3): 030302.
[10] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[11] Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit
Ling-Quan Chen(陈灵泉), Yu-Bo Sheng(盛宇波), Lan Zhou(周澜). Chin. Phys. B, 2019, 28(1): 010302.
[12] Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier
Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2019, 28(1): 014203.
[13] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[14] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
[15] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
No Suggested Reading articles found!