Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014203    DOI: 10.1088/1674-1056/28/1/014203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier

Zhen Guo(郭震)1,2, Lianghong Yu(於亮红)1, Wenqi Li(李文启)1,2,3, Zebiao Gan(甘泽彪)1, Xiaoyan Liang(梁晓燕)1,3
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, Shanghai Technology University, Shanghai 200031, China
Abstract  

We studied the evolution of wavefront aberration (WFA) of a signal beam during amplification in a Ti:sapphire chirped pulse amplification (CPA) system. The results verified that the WFA of the amplified laser beam has little relation with the change of the pump beam energies. Transverse parasitic lasing that might occur in CPA hardly affects the wavefront of the signal beam. Thermal effects were also considered in this study, and the results show that the thermal effect cumulated in multiple amplification processes also has no obvious influence on the wavefront of the signal beam for a single-shot frequency. The results presented in this paper confirmed experimentally that the amplification in a Ti:sapphire CPA system has little impact on the WFA of the signal beam and it is very helpful for wavefront correction of single-shot PW and multi-PW laser systems based on Ti:sapphire.

Keywords:  wavefront aberration      Ti:sapphire      chirped pulse amplification      wavefront correction  
Received:  15 March 2018      Revised:  20 September 2018      Accepted manuscript online: 
PACS:  42.15.Dp (Wave fronts and ray tracing)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61775223) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB1603).

Corresponding Authors:  Lianghong Yu, Xiaoyan Liang     E-mail:  lhyu@siom.ac.cn;liangxy@siom.ac.cn

Cite this article: 

Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕) Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier 2019 Chin. Phys. B 28 014203

[1] Cheriaux G and Chambaret J P 2001 Meas. Sci. Technol. 12 1769
[2] Bahk S W, Rousseau P, Planchon T A, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G A and Yanovsky V 2005 Appl. Phys. B: Lasers Opt. 80 823
[3] Strickland, Donna and Mourou G 1985 Opt. Commun. 55 447
[4] Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F and Audebert P 2016 High Power Laser Sci. Eng. 4 e34
[5] Lureau F, Laux S, Casagrande O, Chalus O, Pellegrina A, Matras G, Radier C, Rey G, Ricaud S, Herriot S, Jougla P, Charbonneau M, Duvochelle P A and Simon-Boisson C 2016 Solid State Lasers XXV: Technol. Devices (SPIE LASE San Francisco California United States) Vol. 9726 p. 972613
[6] Gomez C H, Blake S P, Chekhlov O, Clarke R J, Dunne A M, Galimberti M, Hancock S, Heathcote R, Holligan P, Lyachev A, Matousek P, Musgrave I O, Neely D, Norreys P A, Ross I, Tang Y, Winstone T B, Wyborn B E and Collier J 2010 J. Phys.: Conf. Ser. 244 032006
[7] Lozhkarev V V, Freidman G I, Ginzburg V N, Katin E V, Khazanov E A, Kirsanov A V, Luchinin G A, Mal'shakov A N, Martyanov M A, Palashov O V, Poteomkin A K, Sergeev A M, Shaykin A A and Yakovlev I V 2007 Laser Phys. Lett. 4 421
[8] Zou J P, Blanc C L, Papadopoulos D N, et al. 2015 High Power Laser Sci. Eng. 3 e2
[9] Yu L, Liang X, Xu L, Li W, Peng C, Hu Z, Wang C, Lu X, Chu Y, Gan Z, Liu X, Liu Y, Wang X, Lu H, Yin D, Leng Y, Li R and Xu Z 2015 Opt. Lett. 40 3412
[10] Danson C, Hillier D, Hopps N and Neely D 2015 High Power Laser Sci. Eng. 3 e3
[11] Gan Z, Yu L, Li S, Wang C, Liang X, Liu Y, Li W, Guo Z, Fan Z, Yuan X, Xu L, Liu Z, Xu Y, Lu J, Lu H, Yin D, Leng Y, Li R and Xu Z 2017 Opt. Express 25 5169
[12] Gan Z, Liang X, Yu L, Hong J, Xu M, Hang Y and Li R 2017 Chin. Opt. Lett. 15 091401
[13] L Y, Liang X, Ren Z, Li W, Yi X, Ming L and Hao Y 2012 Chin. Phys. B 21 014201
[14] Ren Z, Liang X, Yu L, Lu X, Li R and Xu Z 2011 High Power Lasers For Fusion Res. 7916 791611
[15] L B, Xu, Lu X Q and Lei Z M 2018 Acta Phys. Sin. 67 024201 (in Chinese)
[16] Yu C Y, Hui L, Xiao W, Fu Q L, X H and Feng 2012 Chin. Phys. B 21 014210
[17] Jeong T M, Choi I W, Hafz N, Sung J H, Lee S K, Ko D K and Lee J 2007 Jpn. J. Appl. Phys. 46 7724
[18] Zou J, Fuchs J, Wattellier B F, Chanteloup J C and Haefner C 2002 Int. Conf. Lasers Appl. Technol. 2002: Advanced Lasers and Systems, October 2003 Moscow, Russian 5137 188
[19] Guo X, Xu Y, Zou X, Lu X, Li Y, Wang C, Leng Y and Li R 2014 Opt. Commun. 330 24
[20] Hwang S, Kim T, Lee J and Yu T J 2017 Opt. Express 25 9511
[1] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[2] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[3] Spatial chirp in Ti:sapphire multipass amplifier
Wenkai Li(黎文开), Jun Lu(陆俊), Yanyan Li(李妍妍), Xiaoyang Guo(郭晓杨), Fenxiang Wu(吴分翔), Linpeng Yu(於林鹏), Pengfei Wang(王朋飞), Yi Xu(许毅), Yuxin Leng(冷雨欣). Chin. Phys. B, 2017, 26(3): 034206.
[4] Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification
Xu Lu (徐露), Yu Liang-Hong (於亮红), Chu Yu-Xi (储玉喜), Gan Ze-Biao (甘泽彪), Liang Xiao-Yan (梁晓燕), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2015, 24(1): 018704.
[5] Operation of Kerr-lens mode-locked Ti:sapphire laser in the non-soliton regime
Liu Hua-Gang(刘华刚), Hu Ming-Lie(胡明列), Song You-Jian(宋有建), Li Yan-Feng (栗岩峰), Chai Lu(柴路), and Wang Ching-Yue(王清月) . Chin. Phys. B, 2010, 19(1): 014215.
[6] An all-solid-state high power quasi-continuous-wave tunable dual-wavelength Ti:sapphire laser system using birefringence filter
Ding Xin(丁欣), Ma Hong-Mei(马洪梅), Zou Lei(邹雷), Zou Yue(邹跃), Wen Wu-Qi(温午麒), Wang Peng(王鹏), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2007, 16(7): 1991-1995.
[7] Pulse-front matched ultra-broadband optical parametric chirped pulse amplifier for sub-12 fs pulse generation
Zhao Wei (赵卫), Liu Hong-Jun (刘红军), Wang Yi-Shan (王屹山), Wang Hong-Ying (王红英), Cheng Zhao (程昭), Chen Guo-Fu (陈国夫). Chin. Phys. B, 2005, 14(2): 359-365.
[8] Analysis of tunable picosecond pulse generation from a distributed feedback Ti:sapphire laser
Hong Zhi (洪治), Yao Xiao-Ke (姚小科). Chin. Phys. B, 2004, 13(9): 1454-1459.
[9] A theoretical study about the chirped pulse amplification laser
Lu Xing-Qiang (卢兴强), Fan Dian-Yuan (范滇元). Chin. Phys. B, 2003, 12(2): 169-173.
[10] PUMP-TUNING KTP OPTICAL PARAMETRIC OSCILLATOR WITH CONTINUOUS OUTPUT WAVELENGTH PUMPED BY A PULSED TUNABLE Ti:SAPPHIRE LASER
Ding Xin (丁欣), Yao Jian-quan (姚建铨), Yu Yi-zhong (于意仲), Yu Xuan-yi (禹宣伊), Xu Jing-jun (许京军), Zhang Guang-yin (张光寅). Chin. Phys. B, 2001, 10(8): 725-729.
No Suggested Reading articles found!