CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A space-dependent atomic superfluid current in Bose-Einstein condensates |
Li Fei (李飞)a c, Li Yong-Fan (李勇帆)b, Zhang Ping-Ke (张平柯)a, Ai Zhen-Zhou (艾振宙)a, Wu Chang-Yi (吴昌义)a |
a Department of Education Science, Hunan First Normal University, Changsha 410205, China;
b Department of Information Science and Engineering, Hunan First Normal University, Changsha 410205, China;
c Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China |
|
|
Abstract A space-dependent atomic superfluid current with an explicit analytical expression and its role in Bose-Einstein condensates are studied. The factors determining the intensity and oscillating amplitude of the space-dependent atomic superfluid current are explored in detail. Research findings reveal that the intensity of the current can be regulated by setting an appropriate configuration of the trap and its oscillating amplitude can be adjusted via Feshbach resonance. It is numerically demonstrated that the space-dependent atomic superfluid current can exert great influence on the spatial distribution of condensed atoms, and even force condensed atoms into very complex distributional states with spatial chaos.
|
Received: 25 September 2014
Revised: 26 November 2014
Accepted manuscript online:
|
PACS:
|
67.85.Jk
|
(Other Bose-Einstein condensation phenomena)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204076 and 11147011), the Scientific Research Fund of Hunan First Normal University (Grant No. XYS13N16), and the Opening Project of Key Laboratory of Low-dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education (Grant No. QSQC1005). |
Corresponding Authors:
Li Fei
E-mail: lifeipaper@163.com
|
Cite this article:
Li Fei (李飞), Li Yong-Fan (李勇帆), Zhang Ping-Ke (张平柯), Ai Zhen-Zhou (艾振宙), Wu Chang-Yi (吴昌义) A space-dependent atomic superfluid current in Bose-Einstein condensates 2015 Chin. Phys. B 24 046701
|
[1] |
Landau L D 1941 J. Phys. (Moscow) 5 71
|
[2] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[3] |
Maragò O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikner G and Foot C J 2000 Phys. Rev. Lett. 84 2056
|
[4] |
Chikkatur A P, Görlitz A, Stamper-Kurn D M, Inouye S, Gupta S and Ketterle W 2000 Phys. Rev. Lett. 85 483
|
[5] |
Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C, Carusotto I, Houdré R, Giacobino E and Bramati A 2009 Nat. Phys. 5 805
|
[6] |
Carusotto I and Ciuti C 2004 Phys. Rev. Lett. 93 166401
|
[7] |
Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
|
[8] |
Cren T, Serrier-Garcia L, Debontridder F and Roditchev D 2011 Phys. Rev. Lett. 107 097202
|
[9] |
Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
|
[10] |
Guo X Y, Ren Z Z, Guo G G and Peng J 2012 Phys. Rev. A 86 053605
|
[11] |
Dubessy R, Liennard T, Pedri P and Perrin H 2012 Phys. Rev. A 86 011602
|
[12] |
Yulin A V, Bludov Yu V, Konotop V V, Kuzmiak V and Salerno M 2011 Phys. Rev. A 84 063638
|
[13] |
Middelkamp S, Torres P J, Kevrekidis P G, Frantzeskakis D J, Carretero-González R, Schmelcher P, Freilich D V and Hall D S 2011 Phys. Rev. A 84 011605
|
[14] |
Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L and Tosi M P 2001 Phys. Rev. Lett. 86 4447
|
[15] |
Stießberger J S and Zwerger W 2000 Phys. Rev. A 62 061601
|
[16] |
Kagan Yu and Maksimov L A 2000 Phys. Rev. Lett. 85 3075
|
[17] |
Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
|
[18] |
Yan Z Y, Konotop V V, Yulin A V and Liu W M 2012 Phys. Rev. E 85 016601
|
[19] |
Wouters M and Savona V 2010 Phys. Rev. B 81 054508
|
[20] |
Hoefer M A, Chang J J, Hamner C and Engels P 2011 Phys. Rev. A 84 041605
|
[21] |
Marecki P 2012 J. Phys. A: Math. Theor. 45 295501
|
[22] |
Das P, Vyas M and Panigrahi P K 2009 J. Phys. B: At. Mol. Opt. Phys. 42 245304
|
[23] |
Fang J and Hai W 2005 Physica B 370 61
|
[24] |
Chong G, Hai W and Xie Q 2004 Chaos 14 217
|
[25] |
Li F, Ren Z Z, Luo H L, Shu W X and Wu Q 2007 Commun. Theor. Phys. 48 107
|
[26] |
Chong G, Hai W and Xie Q 2005 Phys. Rev. E 71 016202
|
[27] |
Li F, Zhang D and Li W 2011 Acta Phys. Sin. 60 120304 (in Chinese)
|
[28] |
Li F, Zhang D, Rong S and Xu Y 2013 J. Exp. Theor. Phys. 117 800
|
[29] |
Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613
|
[30] |
Li F, Shu W X, Luo H L and Ren Z Z 2007 Chin. Phys. 16 650
|
[31] |
Hai W, Lee C, Chong G and Shi L 2002 Phys. Rev. E 66 026202
|
[32] |
Li Y and W Hai 2005 J. Phys. A: Math. Gen. 38 4105
|
[33] |
Coullet P and Vandenberghe N 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1593
|
[34] |
Gardiner S A, Jaksch D, Dum R, Cirac J I and Zoller P 2000 Phys. Rev. A 62 023612
|
[35] |
Jiang H, Susanto H, Benson T and Cliffe K 2014 Phys. Rev. A 89 013828
|
[36] |
White D, Ruddell S and Hoogerland M 2013 Phys. Rev. A 88 063603
|
[37] |
Lenz M, Wüster S, Vale C, Heckenberg N, Rubinsztein-Dunlop H, Holmes C, Milburn G and Davis M 2013 Phys. Rev. A 88 013635
|
[38] |
Gertjerenken B, Arlinghaus S, Teichmann N and Weiss C 2010 Phys. Rev. A 82 023620
|
[39] |
Martin J, Georgeot B and Shepelyansky D L 2009 Phys. Rev. E 79 066205
|
[40] |
Lee C, Hai W, Shi L, Zhu X and Gao K 2001 Phys. Rev. A 64 053604
|
[41] |
Březinová I, Lode A, Streltsov A, Alon O, Cederbaum L and Burgdörfer J 2012 Phys. Rev. A 86 013630
|
[42] |
Li Q, Wang S and Li Z 2014 Chin. Phys. B 23 060310
|
[43] |
Song C, Li J and Zong F 2012 Chin. Phys. B 21 020306
|
[44] |
Kagan Y, Surkov E L and Shlyapnikov G V 1997 Phys. Rev. Lett. 79 2604
|
[45] |
Sakaguchi H and Malomed B A 2005 Phys. Rev. E 72 046610
|
[46] |
Abdullaev F Kh, Gammal A, Salerno M and Tomio L 2008 Phys. Rev. A 77 023615
|
[47] |
Porter M A, Kevrekidis P G, Malomed B A and Frantzeskakis D J 2007 Physica D 229 104
|
[48] |
Xin X, Huang F, Xu Z and Li H 2014 Chin. Phys. B 23 070307
|
[49] |
Zhou Z, Yu H and Yan J 2010 Chin. Phys. B 19 010304
|
[50] |
Wang Q, Wen L and Li Z 2012 Chin. Phys. B 21 080501
|
[51] |
Rodrigues A S, Kevrekidis P G, Porter M A, Frantzeskakis D J, Schmelcher P and Bishop A R 2008 Phys. Rev. A 78 013611
|
[52] |
Moerdijk A J, Verhaar B J and Axelsson A 1995 Phys. Rev. A 51 4852
|
[53] |
Roberts J L, Claussen N R, Burke J P, Greene C H, Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
|
[54] |
Stenger J, Inouye S, Andrews M R, Miesner H J, Stamper-Kurn D M and Ketterle W 1999 Phys. Rev. Lett. 82 2422
|
[55] |
Theocharis G, Schmelcher P, Kevrekidis P G and Frantzeskakis D J 2005 Phys. Rev. A 72 033614
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|