Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 046701    DOI: 10.1088/1674-1056/24/4/046701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A space-dependent atomic superfluid current in Bose-Einstein condensates

Li Fei (李飞)a c, Li Yong-Fan (李勇帆)b, Zhang Ping-Ke (张平柯)a, Ai Zhen-Zhou (艾振宙)a, Wu Chang-Yi (吴昌义)a
a Department of Education Science, Hunan First Normal University, Changsha 410205, China;
b Department of Information Science and Engineering, Hunan First Normal University, Changsha 410205, China;
c Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract  

A space-dependent atomic superfluid current with an explicit analytical expression and its role in Bose-Einstein condensates are studied. The factors determining the intensity and oscillating amplitude of the space-dependent atomic superfluid current are explored in detail. Research findings reveal that the intensity of the current can be regulated by setting an appropriate configuration of the trap and its oscillating amplitude can be adjusted via Feshbach resonance. It is numerically demonstrated that the space-dependent atomic superfluid current can exert great influence on the spatial distribution of condensed atoms, and even force condensed atoms into very complex distributional states with spatial chaos.

Keywords:  Bose-Einstein condensates      superfluid current      chaos  
Received:  25 September 2014      Revised:  26 November 2014      Accepted manuscript online: 
PACS:  67.85.Jk (Other Bose-Einstein condensation phenomena)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Ac (Low-dimensional chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204076 and 11147011), the Scientific Research Fund of Hunan First Normal University (Grant No. XYS13N16), and the Opening Project of Key Laboratory of Low-dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education (Grant No. QSQC1005).

Corresponding Authors:  Li Fei     E-mail:  lifeipaper@163.com

Cite this article: 

Li Fei (李飞), Li Yong-Fan (李勇帆), Zhang Ping-Ke (张平柯), Ai Zhen-Zhou (艾振宙), Wu Chang-Yi (吴昌义) A space-dependent atomic superfluid current in Bose-Einstein condensates 2015 Chin. Phys. B 24 046701

[1] Landau L D 1941 J. Phys. (Moscow) 5 71
[2] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[3] Maragò O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikner G and Foot C J 2000 Phys. Rev. Lett. 84 2056
[4] Chikkatur A P, Görlitz A, Stamper-Kurn D M, Inouye S, Gupta S and Ketterle W 2000 Phys. Rev. Lett. 85 483
[5] Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C, Carusotto I, Houdré R, Giacobino E and Bramati A 2009 Nat. Phys. 5 805
[6] Carusotto I and Ciuti C 2004 Phys. Rev. Lett. 93 166401
[7] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[8] Cren T, Serrier-Garcia L, Debontridder F and Roditchev D 2011 Phys. Rev. Lett. 107 097202
[9] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[10] Guo X Y, Ren Z Z, Guo G G and Peng J 2012 Phys. Rev. A 86 053605
[11] Dubessy R, Liennard T, Pedri P and Perrin H 2012 Phys. Rev. A 86 011602
[12] Yulin A V, Bludov Yu V, Konotop V V, Kuzmiak V and Salerno M 2011 Phys. Rev. A 84 063638
[13] Middelkamp S, Torres P J, Kevrekidis P G, Frantzeskakis D J, Carretero-González R, Schmelcher P, Freilich D V and Hall D S 2011 Phys. Rev. A 84 011605
[14] Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L and Tosi M P 2001 Phys. Rev. Lett. 86 4447
[15] Stießberger J S and Zwerger W 2000 Phys. Rev. A 62 061601
[16] Kagan Yu and Maksimov L A 2000 Phys. Rev. Lett. 85 3075
[17] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
[18] Yan Z Y, Konotop V V, Yulin A V and Liu W M 2012 Phys. Rev. E 85 016601
[19] Wouters M and Savona V 2010 Phys. Rev. B 81 054508
[20] Hoefer M A, Chang J J, Hamner C and Engels P 2011 Phys. Rev. A 84 041605
[21] Marecki P 2012 J. Phys. A: Math. Theor. 45 295501
[22] Das P, Vyas M and Panigrahi P K 2009 J. Phys. B: At. Mol. Opt. Phys. 42 245304
[23] Fang J and Hai W 2005 Physica B 370 61
[24] Chong G, Hai W and Xie Q 2004 Chaos 14 217
[25] Li F, Ren Z Z, Luo H L, Shu W X and Wu Q 2007 Commun. Theor. Phys. 48 107
[26] Chong G, Hai W and Xie Q 2005 Phys. Rev. E 71 016202
[27] Li F, Zhang D and Li W 2011 Acta Phys. Sin. 60 120304 (in Chinese)
[28] Li F, Zhang D, Rong S and Xu Y 2013 J. Exp. Theor. Phys. 117 800
[29] Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613
[30] Li F, Shu W X, Luo H L and Ren Z Z 2007 Chin. Phys. 16 650
[31] Hai W, Lee C, Chong G and Shi L 2002 Phys. Rev. E 66 026202
[32] Li Y and W Hai 2005 J. Phys. A: Math. Gen. 38 4105
[33] Coullet P and Vandenberghe N 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1593
[34] Gardiner S A, Jaksch D, Dum R, Cirac J I and Zoller P 2000 Phys. Rev. A 62 023612
[35] Jiang H, Susanto H, Benson T and Cliffe K 2014 Phys. Rev. A 89 013828
[36] White D, Ruddell S and Hoogerland M 2013 Phys. Rev. A 88 063603
[37] Lenz M, Wüster S, Vale C, Heckenberg N, Rubinsztein-Dunlop H, Holmes C, Milburn G and Davis M 2013 Phys. Rev. A 88 013635
[38] Gertjerenken B, Arlinghaus S, Teichmann N and Weiss C 2010 Phys. Rev. A 82 023620
[39] Martin J, Georgeot B and Shepelyansky D L 2009 Phys. Rev. E 79 066205
[40] Lee C, Hai W, Shi L, Zhu X and Gao K 2001 Phys. Rev. A 64 053604
[41] Březinová I, Lode A, Streltsov A, Alon O, Cederbaum L and Burgdörfer J 2012 Phys. Rev. A 86 013630
[42] Li Q, Wang S and Li Z 2014 Chin. Phys. B 23 060310
[43] Song C, Li J and Zong F 2012 Chin. Phys. B 21 020306
[44] Kagan Y, Surkov E L and Shlyapnikov G V 1997 Phys. Rev. Lett. 79 2604
[45] Sakaguchi H and Malomed B A 2005 Phys. Rev. E 72 046610
[46] Abdullaev F Kh, Gammal A, Salerno M and Tomio L 2008 Phys. Rev. A 77 023615
[47] Porter M A, Kevrekidis P G, Malomed B A and Frantzeskakis D J 2007 Physica D 229 104
[48] Xin X, Huang F, Xu Z and Li H 2014 Chin. Phys. B 23 070307
[49] Zhou Z, Yu H and Yan J 2010 Chin. Phys. B 19 010304
[50] Wang Q, Wen L and Li Z 2012 Chin. Phys. B 21 080501
[51] Rodrigues A S, Kevrekidis P G, Porter M A, Frantzeskakis D J, Schmelcher P and Bishop A R 2008 Phys. Rev. A 78 013611
[52] Moerdijk A J, Verhaar B J and Axelsson A 1995 Phys. Rev. A 51 4852
[53] Roberts J L, Claussen N R, Burke J P, Greene C H, Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
[54] Stenger J, Inouye S, Andrews M R, Miesner H J, Stamper-Kurn D M and Ketterle W 1999 Phys. Rev. Lett. 82 2422
[55] Theocharis G, Schmelcher P, Kevrekidis P G and Frantzeskakis D J 2005 Phys. Rev. A 72 033614
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[9] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[10] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[11] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[12] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
No Suggested Reading articles found!