Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 099201    DOI: 10.1088/1674-1056/26/9/099201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components

Pengcheng Zhao(赵朋程), Lixin Guo(郭立新)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons. Then the formula of the electric field power is introduced into the global model to simulate the air breakdown. The breakdown prediction from the global model agrees well with the experimental data. Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components, while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes. The ionization of nitrogen and oxygen induces the growth of electron density, and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.
Keywords:  high power microwave      air breakdown      effective electric field      global model  
Received:  06 March 2017      Revised:  13 April 2017      Accepted manuscript online: 
PACS:  92.60.Ta (Electromagnetic wave propagation)  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61501358, 61431010, and 61627901) and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Pengcheng Zhao, Lixin Guo     E-mail:  pczhao@xidian.edu.cn;lxguo@xidian.edu.cn

Cite this article: 

Pengcheng Zhao(赵朋程), Lixin Guo(郭立新) Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components 2017 Chin. Phys. B 26 099201

[1] Krile J T, Mcquage L, Edmiston G F, Walter J and Neuber A A 2009 IEEE Trans. Plasma Sci. 2009 37 2139
[2] Cook A M, Hummelt J S, Shapiro M A and Temkin R J 2013 Phys. Plasmas 20 043507
[3] Zhao P, Guo L and Shu P 2017 Chin. Phys. B 26 029201
[4] Zhou Q H, Sun H F, Dong Z W and Zhou H J 2015 Acta Phys. Sin. 64 0175202 (in Chinese)
[5] Zhao P, Guo L and Li H 2015 Chin. Phys. B 24 105102
[6] Oda Y, Komurasaki K and Takahashi K 2006 J. Appl. Phys. 100 113307
[7] Nam S K and Verboncoeur J P 2009 Comput. Phys. Comm. 180 628
[8] Boeuf J P, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
[9] Ford P J, Beeson S R, Krompholz H G and Neuber A A 2012 Phys. Plasmas 19 073503
[10] Zhu M, Chang C, Yan K, Liu C and Chen C 2015 IEEE Trans. Plasma Sci. 43 1670
[11] Vahedi V and Surendra M 1995 Comput. Phys. Comm. 87 179
[12] The Siglo Data Base, CPAT and Kinema Software, http://www.csn.net/siglo, 1998
[13] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[14] Khodataev K V 2013 Tech. Phys. 58 294
[15] Ali A W 1988 Laser and Particle Beams 6 105
[16] Nam S K and Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[17] Foster J, Edmiston G, Thomas M and Neuber A 2008 Rev. Sci. Instrum. 79 114701
[1] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[2] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[3] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[4] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[5] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[6] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[7] Effect of aperture field distribution on the maximum radiated power at atmospheric pressure
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(11): 115101.
[8] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[9] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文). Chin. Phys. B, 2015, 24(4): 048502.
[10] Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏). Chin. Phys. B, 2015, 24(10): 105102.
[11] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海). Chin. Phys. B, 2013, 22(6): 068502.
[12] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Qiao Li-Ping (乔丽萍 ). Chin. Phys. B, 2013, 22(2): 028502.
[13] HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment
Wang Dong (王冬), Qin Fen (秦奋), Wen Jie (文杰), Chen Dai-Bing (陈代兵), Jin Xiao (金晓), An Hai-Shi (安海狮), Zhang Xin-Kai (张新凯 ). Chin. Phys. B, 2012, 21(8): 084101.
[14] Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation
Li Wei (李伟), Liu Yong-Gui (刘永贵), Shu Ting (舒挺), Qian Bao-Liang (钱宝良 ). Chin. Phys. B, 2012, 21(8): 088401.
[15] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) . Chin. Phys. B, 2012, 21(5): 058502.
No Suggested Reading articles found!