Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047301    DOI: 10.1088/1674-1056/24/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced surface plasmon interference lithography from cavity resonance in the grating slits

Guo Kai (郭凯), Liu Jian-Long (刘建龙), Zhou Ke-Ya (周可雅), Liu Shu-Tian (刘树田)
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Surface plasmon interference lithography based on grating diffraction has been studied both theoretically and experimentally in recent years. In this paper, we demonstrate that the cavity resonance in the grating slits can improve the subwavelength interference, not only the intensity but also the uniformity of the pattern. Both the typical lithography structure which merely consists of periodic metallic gratings and the modified structure equipped with a reflection layer are studied. The finite element method has been performed to study the interference pattern. Numerical simulations show that the property of the interference pattern is the optimum when cavity resonance happens. This enhancement can be applied to all the lithography structures which are based on the grating diffraction.
Keywords:  surface plasmons      lithography      cavity resonance  
Received:  03 October 2014      Revised:  14 November 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Hz (Interference)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702) and the National Natural Science Foundation of China (Grant Nos. 61377016, 61308017, and 61307072).
Corresponding Authors:  Liu Shu-Tian     E-mail:  stliu@hit.edu.cn

Cite this article: 

Guo Kai (郭凯), Liu Jian-Long (刘建龙), Zhou Ke-Ya (周可雅), Liu Shu-Tian (刘树田) Enhanced surface plasmon interference lithography from cavity resonance in the grating slits 2015 Chin. Phys. B 24 047301

[1] Silverman J P 1998 J. Vac. Sci. Technol. B 16 3137
[2] Gwyn C W, Stulen R, Sweeney D and Attwood D 1998 J. Vac. Sci. Technol. B 16 3142
[3] Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[4] Rothschild M, Bloomstein T M, Cuitin J E, Downs D K, Fedynyshyn T H, Hardy D E, Kunz R R, Liberman V, Sedlacek J H C, Uttaro R S, Bates A K and van Peski C 1999 J. Vac. Sci. Technol. B 17 3262
[5] Mansfield S and Kino G 1990 Appl. Phys. Lett. 57 2615
[6] Terris B, Mamin H and Rugar D 1996 Appl. Phys. Lett. 68 141
[7] Wu Q, Feke G, Grober R and Ghislain L 1999 Appl. Phys. Lett. 75 4064
[8] Luo X and Ishihara T 2004 Appl. Phys. Lett. 84 4780
[9] Luo X and Ishihara T 2004 Opt. Express 12 3055
[10] Liu Z, Wei Q and Zhang X 2005 Nano Lett. 5 957
[11] Jiao X, Wang P, Zhang D, Tang L, Xie J and Ming H 2006 Opt. Express 14 4850
[12] Xu T, Fang L, Ma J, Zeng B, Liu Y, Cui J, Wang C, Fang Q and Luo X 2009 Appl. Phys. B 97 175
[13] Liang H, Wang J, Fan F, Qin A, Zhang C and Cheng H 2010 Chin. Phys. Lett. 27 094205
[14] Li H, Chen J and Wang Q 2010 Chin. Phys. B 19 114203
[15] Ge W, Wang C, Xue Y, Cao B, Zhang B and Xu K 2011 Opt. Express 19 6714
[16] Guo Y N, Li X F, Pan S, Wang Q, Wang S and Wu Y K 2012 Chin. Phys. B 21 057301
[17] Li X F, Zhang X, Guo Y N, Meng J K and Wei J L 2013 J. Opt. Soc. Am. B 30 229
[18] Xu F, Chen G, Wang C, Cao B and Lou Y 2013 Opt. Lett. 38 3819
[19] Shi H, Wang C, Du C, Luo X, Dong X and Gao H 2005 Opt. Express 13 6815
[20] Zakharian A, Moloney J and Mansuripur M 2007 Opt. Express 15 183
[21] Wang J Q, Liang H M, Shi S and Du J L 2009 Chin. Phys. Lett. 26 084208
[22] Weiner J 2009 Rep. Prog. Phys. 72 064401
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[6] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[7] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[8] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[9] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[10] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[11] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[12] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[13] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
[14] Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference
Yizhen Chen(陈宜臻), Xiangxian Wang(王向贤), Ru Wang(王茹), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(5): 054203.
[15] Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph
Ru Wang(王茹), Xiangxian Wang(王向贤), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(2): 024202.
No Suggested Reading articles found!