Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044203    DOI: 10.1088/1674-1056/24/4/044203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sub-Rayleigh limit imaging via intensity correlation measurements

Yao Xu-Ri (姚旭日)a b, Li Long-Zhen (李龙珍)a b, Liu Xue-Feng (刘雪峰)a, Yu Wen-Kai (俞文凯)a b, Zhai Guang-Jie (翟光杰)a
a Key Laboratory of Electronics and Information Technology for Space System, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We demonstrate sub-Rayleigh limit imaging of an object via intensity correlation measurements. The image completely unaffected by the disturbance of diffraction-limit is achieved under the condition that the imaging system has an appropriate field of view. The resolution of this sub-Rayleigh limit imaging system is only tied to the lateral resolution of the illumination light.
Keywords:  image forming and processing      speckle  
Received:  04 September 2014      Revised:  16 October 2014      Accepted manuscript online: 
PACS:  42.30.Va (Image forming and processing)  
  42.30.Ms (Speckle and moiré patterns)  
Fund: Project supported by the National Major Scientific Instruments Development Project of China (Grant No. 2013YQ030595), the Hi-Tech Research and Development Program of China (Grant No. 2011AA120102), and the National Natural Science Foundation of China (Grant No. 11275024).
Corresponding Authors:  Zhai Guang-Jie     E-mail:  gjzhai@nssc.ac.cn

Cite this article: 

Yao Xu-Ri (姚旭日), Li Long-Zhen (李龙珍), Liu Xue-Feng (刘雪峰), Yu Wen-Kai (俞文凯), Zhai Guang-Jie (翟光杰) Sub-Rayleigh limit imaging via intensity correlation measurements 2015 Chin. Phys. B 24 044203

[1] Rayleigh L 1879 Philos. Mag. 8 261
[2] Sheppard C J R and Choudhury A 1977 Opt. Acta 24 1051
[3] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[4] Betzig E, Lewis A, Harootunian A, Isaacson M and Kratschmer E 1996 Biophys. J. 49 269
[5] Gustafsson M G 2000 J. Microsc. 198 82
[6] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[7] Giovannetti V, Lloyd S, Maccone L and Shapiro J H 2009 Phys. Rev. A 79 013827
[8] Zhang P L, Gong W L, Shen X, Huang D J and Han S S 2009 Opt. Lett. 34 1222
[9] Oh J E, Cho Y W, Scarelli G and Kim Y H 2013 Opt. Lett. 38 682
[10] Voelz D 2010 Computional Fourier Optics (Bellingham: SPIE)
[11] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[12] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[13] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[14] Liu Q, Luo K H, Chen X H and Wu L A 2010 Chin. Phys. B 2010 094211
[15] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[16] Candés E J, Romberg J and Tao T 2006 IEEE Trans. Inf. Theory 52 489
[17] Donoho D 2006 IEEE Trans. Inf. Theory 52 1289
[18] Li C B 2010 "An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing," Master Thesis, Rice University
[19] Shapiro J H 2008 Phys. Rev. A 78 061802
[20] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Proc. Mag. 25 83
[21] Park J H, Park C, Yu H, Park J, Han S, Shin J, Ko S H, Nam K T, Cho Y H and Park Y 2013 Nat. Photon. 7 454
[1] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[2] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[3] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[4] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[5] Decoherence of fiber light sources using a single-trench fiber
Huahui Zhang(张华辉), Weili Zhang(张伟利), Zhao Wang(王昭), Hongyang Zhu(朱洪杨), Chao Yu(余超), Jiayu Guo(郭佳宇), Shanshan Wang(王珊珊), and Yunjiang Rao(饶云江). Chin. Phys. B, 2020, 29(12): 124210.
[6] Tuning the intensity statistics of random speckle patterns
Fan Meng(孟凡), Yue Zhao(赵乐), Yun-Zuo Zhang(张云佐), Lei Huo(霍磊). Chin. Phys. B, 2019, 28(5): 057801.
[7] Speckle reduction by selective spatial-domain mask in digital holography
Ming-Da Liang(梁明大), Li Chen(陈丽), Yi-Hua Hu(胡义华), Wei-Tao Lin(林伟涛), Yong-Hao Chen(陈永昊). Chin. Phys. B, 2018, 27(10): 104202.
[8] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
[9] Distribution characteristics of intensity and phase vortices of speckle fields produced by N-pinhole random screens
Liu Man (刘曼), Cheng Chuan-Fu (程传福), Ren Xiao-Rong (任晓荣). Chin. Phys. B, 2015, 24(9): 094202.
[10] Ghost imaging based on Pearson correlation coefficients
Yu Wen-Kai (俞文凯), Yao Xu-Ri (姚旭日), Liu Xue-Feng (刘雪峰), Li Long-Zhen (李龙珍), Zhai Guang-Jie (翟光杰). Chin. Phys. B, 2015, 24(5): 054203.
[11] Speckle intensity images of target based on Monte Carlo method
Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森). Chin. Phys. B, 2014, 23(3): 037801.
[12] Experimental study of regional fractal speckle produced in large angle scattering
Song Hong-Sheng(宋洪胜), Cheng Chuan-Fu(程传福), Liu Yun-Yan(刘云燕), Liu Gui-Yuan(刘桂媛), and Teng Shu-Yun(滕树云). Chin. Phys. B, 2010, 19(7): 074204.
[13] Measurements of femtosecond temporal speckle field of a random medium
Liu Wen-Jun(刘文军), Gao Ren-Xi(高仁喜), and Qu Shi-Liang(曲士良). Chin. Phys. B, 2010, 19(2): 024204.
[14] Correlation and fractal properties of speckles in the extremely deep Fresnel diffraction region
Song Hong-Sheng(宋洪胜), Liu Man(刘曼), Liu Gui-Yuan(刘桂媛), Xu Zhi-Wei(徐芝伟), Teng Shu-Yun(滕树云), and Cheng Chuan-Fu(程传福). Chin. Phys. B, 2010, 19(12): 124202.
[15] Deformation measurements of three types of Portevin--Le Chatelier bands
Xiang Guo-Fu (项国富), Zhang Qing-Chuan (张青川), Liu Hao-Wen (刘颢文), Jiang Hui-Feng (江慧丰), Wu Xiao-Ping (伍小平). Chin. Phys. B, 2006, 15(10): 2378-2384.
No Suggested Reading articles found!