Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 099501    DOI: 10.1088/1674-1056/22/9/099501

Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas

Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪)
Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  In order to exploit its potential applications, we experimentally study the dependence of 85Rb-based coherent population trapping (CPT) resonance on N2 buffer gas with 6 vapor cells filled with natural rubidium and N2. The experiments are carried out at different pressures and temperatures, and the results reveal that higher cell temperature makes the resonance more sensitive to N2 pressure. Thus, it is important to choose a proper buffer gas pressure at a given cell temperature. This work provides valuable data for the application of 85Rb CPT resonance with a buffer gas of N2.
Keywords:  coherent population trapping (CPT)      buffer gas      atomic clock  
Received:  24 December 2012      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  34.80.Bm (Elastic scattering)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10927403).
Corresponding Authors:  Zhang Yi     E-mail:

Cite this article: 

Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪) Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas 2013 Chin. Phys. B 22 099501

[1] Vanier J, Godone A and Levi F 1998 Phys. Rev. A 58 2345
[2] Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
[3] Lutwak R, Vlitas P, Varghes M, Mescher M, Serkland D K and Peake G M 2005 Proc. IEEE Int. Freq. Control Symp. p. 752
[4] Scully M O and Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
[5] Nagel A, Graf L, Naumov A, Mariotti E, Biancalana V, Meschedeand D and Wynands R 1998 Euro. Phys. Lett. 44 31
[6] Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2004 Appl. Phys. Lett. 85 6409
[7] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[8] Zhou Z C, Wei R, Shi C Y, Li T and Wang Y Z 2011 Chin. Phys. B 20 034206
[9] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[10] Zhang J H, Liu Q, Zeng X J, Li J X and Sun W M 2012 Chin. Phys. Lett. 29 068501
[11] Zhang Y, Qu S and Gu S 2012 Opt. Express 20 6400
[12] Yun P, Zhang Y, Liu G, Deng W, You L and Gu S 2012 Euro. Phys. Lett. 97 63004
[13] Yang J, Liu G B and Gu S 2012 Acta Phys. Sin. 61 043202 (in Chinese)
[14] Liu G B, Du R C, Liu C Y and Gu S H 2008 Chin. Phys. Lett. 25 472
[15] Liu G and Gu S H 2010 J. Phys. B 43 035004
[16] Goka S, Okura T, Moroyama M and Watanabe Y 2008 Proc. IEEE Int. Freq. Control Symp. p. 103
[17] Liu L, Guo T, Deng K, Liu X Y, Chen X Z and Wang Z 2007 Chin. Phys. Lett. 24 1883
[18] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys. 104 103116
[19] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[20] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q 23 309
[21] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol: Adam Hilger)
[22] Vanier J 2005 Appl. Phys. B 81 421
[23] Micalizio S, Godone A, Levi F and Vanier J 2006 Phys. Rev. A 73 033414
[24] Bender P L 1963 Phys. Rev. 132 2154
[25] Bean B L and Lambert R H 1975 Phys. Rev. A 13 492
[26] Vanier J, Simard J F and Boulanger J S 1974 Phys. Rev. A 9 1031
[27] Vanier J, Godone A and Levi F 1998 Phys. Rev. A 58 2345
[28] Gu S and Behr J 2003 Phys. Rev. A 68 015804
[29] Knappe S, Hollberg L and Kitching J 2004 Opt. Lett. 29 388
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[4] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[5] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[6] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[7] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[8] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[9] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[10] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[11] Characterizing passive coherent population trapping resonance in cesium vapor cell filled with neon as buffer gas
Liu Zhi (刘智), Wang Jie-Ying (王杰英), Diao Wen-Ting (刁文婷), He Jun (何军), Wang Jun-Min (王军民). Chin. Phys. B, 2013, 22(4): 043201.
[12] Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer
Shi Rong-Ye (石荣晔), Wang Yan-Hui (王延辉). Chin. Phys. B, 2013, 22(10): 100703.
[13] Miniaturized optical system for atomic fountain clock
Lü De-Sheng (吕德胜), Qu Qiu-Zhi (屈求智), Wang Bin (汪斌), Zhao Jian-Bo (赵剑波), Li Tang (李唐), Liu Liang (刘亮), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2011, 20(6): 063201.
[14] Magnetic field measurement based on a stimulated two-photon Raman transition
Zhou Zi-Chao(周子超),Wei Rong(魏荣),Shi Chun-Yan(史春艳), Li Tang(李唐),and Wang Yu-Zhu(王育竹) . Chin. Phys. B, 2011, 20(3): 034206.
[15] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
No Suggested Reading articles found!