INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optical nuclear spin polarization in quantum dots |
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟) |
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.
|
Received: 18 April 2016
Revised: 05 June 2016
Accepted manuscript online:
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
76.70.Fz
|
(Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)
|
|
78.67.Hc
|
(Quantum dots)
|
|
Fund: Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805). |
Corresponding Authors:
Ai-Xian Li, Wei Zhang
E-mail: liaixian0123@sina.com;zhang_wei@iapcm.ac.cn
|
Cite this article:
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟) Optical nuclear spin polarization in quantum dots 2016 Chin. Phys. B 25 108506
|
[1] |
Taylor J M, Marcus C M and Lukin M D 2003 Phys. Rev. Lett. 90 206803
|
[2] |
Kurncz Z, Sorensen M W, Taylor J M, Lukin M D and Fleischhauser M 2009 Phys. Rev. Lett. 103 010502
|
[3] |
Rudner M S and Levitov 2007 Phys. Rev. Lett. 99 246602
|
[4] |
Moody G, McDonald C, Feldman A, Harvey T, Mirin R P and Silverman K L 2016 Phys. Rev. Lett. 116 037402
|
[5] |
Shi X F 2013 Phys. Rev. B 87 195318
|
[6] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[7] |
Korenev V L 2007 Phys. Rev. Lett. 99 256405
|
[8] |
Koppens F H L, Folk J A, Elzerman J M, Hanson R, Willems L H van Beveren, Vink I T, Kouwenhoven L P, Vandersypen L M K, Tranitz H P andWegscheider W 2005 Science 309 1346
|
[9] |
Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Nature 435 925
|
[10] |
Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
|
[11] |
Gong Z X, Yin Z Q and Duan L M 2011 New J. Phys. 13 033036
|
[12] |
Yang W and Sham L J 2013 Phys. Rev. B 88 235304
|
[13] |
Liu R B, Yao W and Sham L J 2006 New J. Phys. 9 226
|
[14] |
Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
|
[15] |
Khaetskii A, Loss D and Glazman L 2002 Phys. Rev. Lett. 88 186802
|
[16] |
Coish W A and Loss D 2004 Phys. Rev. B 70 195340
|
[17] |
Alzetta G, Gozzini A, Moi L and Orriols G 1976 IL Nuovo Cimento B 36 5
|
[18] |
Xu X D, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2008 Nat. Phys. 4 692
|
[19] |
Xu X D, Yao W, Sun B, Steel D G, Bracker A S, Gammon D and Sham L J 2009 Nature 459 1105
|
[20] |
Gao W B, Imamoglu A, Bernien H and Hanson R 2015 Nat. Photon. 9 363
|
[21] |
Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
|
[22] |
Li X H, Zhang X Z and Yang X D 2007 Chin. Phys. 16 1947
|
[23] |
Latta C, Högele A, Zhao Y, Vamivakas A N, Maletinsky P, Kroner M, Dreiser J, Carusotto I, Badolato A, Schuh D, Wegscheider W, Atature M and Imamoglu A 2009 Nat. Phys. 5 758
|
[24] |
Stepanenko D, Burkard G, Giedke G and Imanmoglu A 2006 Phys. Rev. Lett. 96 136401
|
[25] |
Issler M, Kessler E M, Giedke G, Yelin S, Cirac I, Lukin M D and Imanmoglu A 2010 Phys. Rev. Lett. 105 267202
|
[26] |
Onur A R and van der Wal C H arXiv: 1409.7576
|
[27] |
Golovach V N, Borhani M and Loss D 2006 Phys. Rev. B 74 165319
|
[28] |
Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
|
[29] |
Rashba E I 2008 Phys. Rev. B 78 195302
|
[30] |
Chesi S, Yang L P and Loss D 2015 Phys. Rev. Lett. 116 066806
|
[31] |
Urbaszek B, Marie X, Amand T, Krebs O, Voisin P, Maletinsky P, Högele A, Imamouglu 2013 Rev. Mod. Phys. 85 79
|
[32] |
Pang H, Gong Z and Yao W 2015 Phys. Rev. B 91 035305
|
[33] |
Emary C 2007 Phys. Rev. B 76 245319
|
[34] |
Iñarrea J, Platero G and MacDonald A H 2007 Phys. Rev. B 76 085329
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|