Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108506    DOI: 10.1088/1674-1056/25/10/108506

Optical nuclear spin polarization in quantum dots

Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟)
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.

Keywords:  nuclear spin polarization      coherent population trapping      electron dipole spin resonance  
Received:  18 April 2016      Revised:  05 June 2016      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  76.70.Fz (Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)  
  78.67.Hc (Quantum dots)  

Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).

Corresponding Authors:  Ai-Xian Li, Wei Zhang     E-mail:;

Cite this article: 

Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟) Optical nuclear spin polarization in quantum dots 2016 Chin. Phys. B 25 108506

[1] Taylor J M, Marcus C M and Lukin M D 2003 Phys. Rev. Lett. 90 206803
[2] Kurncz Z, Sorensen M W, Taylor J M, Lukin M D and Fleischhauser M 2009 Phys. Rev. Lett. 103 010502
[3] Rudner M S and Levitov 2007 Phys. Rev. Lett. 99 246602
[4] Moody G, McDonald C, Feldman A, Harvey T, Mirin R P and Silverman K L 2016 Phys. Rev. Lett. 116 037402
[5] Shi X F 2013 Phys. Rev. B 87 195318
[6] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[7] Korenev V L 2007 Phys. Rev. Lett. 99 256405
[8] Koppens F H L, Folk J A, Elzerman J M, Hanson R, Willems L H van Beveren, Vink I T, Kouwenhoven L P, Vandersypen L M K, Tranitz H P andWegscheider W 2005 Science 309 1346
[9] Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Nature 435 925
[10] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[11] Gong Z X, Yin Z Q and Duan L M 2011 New J. Phys. 13 033036
[12] Yang W and Sham L J 2013 Phys. Rev. B 88 235304
[13] Liu R B, Yao W and Sham L J 2006 New J. Phys. 9 226
[14] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[15] Khaetskii A, Loss D and Glazman L 2002 Phys. Rev. Lett. 88 186802
[16] Coish W A and Loss D 2004 Phys. Rev. B 70 195340
[17] Alzetta G, Gozzini A, Moi L and Orriols G 1976 IL Nuovo Cimento B 36 5
[18] Xu X D, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2008 Nat. Phys. 4 692
[19] Xu X D, Yao W, Sun B, Steel D G, Bracker A S, Gammon D and Sham L J 2009 Nature 459 1105
[20] Gao W B, Imamoglu A, Bernien H and Hanson R 2015 Nat. Photon. 9 363
[21] Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
[22] Li X H, Zhang X Z and Yang X D 2007 Chin. Phys. 16 1947
[23] Latta C, Högele A, Zhao Y, Vamivakas A N, Maletinsky P, Kroner M, Dreiser J, Carusotto I, Badolato A, Schuh D, Wegscheider W, Atature M and Imamoglu A 2009 Nat. Phys. 5 758
[24] Stepanenko D, Burkard G, Giedke G and Imanmoglu A 2006 Phys. Rev. Lett. 96 136401
[25] Issler M, Kessler E M, Giedke G, Yelin S, Cirac I, Lukin M D and Imanmoglu A 2010 Phys. Rev. Lett. 105 267202
[26] Onur A R and van der Wal C H arXiv: 1409.7576
[27] Golovach V N, Borhani M and Loss D 2006 Phys. Rev. B 74 165319
[28] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[29] Rashba E I 2008 Phys. Rev. B 78 195302
[30] Chesi S, Yang L P and Loss D 2015 Phys. Rev. Lett. 116 066806
[31] Urbaszek B, Marie X, Amand T, Krebs O, Voisin P, Maletinsky P, Högele A, Imamouglu 2013 Rev. Mod. Phys. 85 79
[32] Pang H, Gong Z and Yao W 2015 Phys. Rev. B 91 035305
[33] Emary C 2007 Phys. Rev. B 76 245319
[34] Iñarrea J, Platero G and MacDonald A H 2007 Phys. Rev. B 76 085329
[1] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[2] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[3] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[4] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[5] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[6] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[7] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[8] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
[9] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[10] Transient responses of transparency in a far-off resonant atomic system
Hu Zheng-Feng (胡正峰), Du Chun-Guang (杜春光), Deng Jian-Liao (邓见辽), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2014, 23(5): 054204.
[11] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[12] High contrast atomic magnetometer based on coherent population trapping
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(2): 027601.
[13] Dependence of the 85Rb coherent population trapping resonance characteristic on the pressure of N2 buffer gas
Qu Su-Ping (屈苏平), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2013, 22(9): 099501.
[14] Characterizing passive coherent population trapping resonance in cesium vapor cell filled with neon as buffer gas
Liu Zhi (刘智), Wang Jie-Ying (王杰英), Diao Wen-Ting (刁文婷), He Jun (何军), Wang Jun-Min (王军民). Chin. Phys. B, 2013, 22(4): 043201.
[15] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
No Suggested Reading articles found!