ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Very low threshold operation of quantum cascade lasers |
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China |
|
|
Abstract A strain-compensated InP-based quantum cascade laser (QCL) structure emitting at 4.6 μm is demonstrated, based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy (MBE). By optimizing the growth parameters, a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated. Threshold current densities as low as 0.47 kA/cm2 in pulsed operation and 0.56 kA/cm2 in continuous-wave (cw) operation at 293 K were achieved for this state-of-the-art QCL. A minimum power consumption of 3.65 W was measured for the QCL, uncooled, with a high-reflectivity (HR) coating on its rear facet.
|
Received: 19 May 2014
Revised: 22 August 2014
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632801 and 2013CB632803), the National Natural Science Foundation of China (Grant Nos. 61306058, 61274094, and 61435014), and the Beijing Natural Science Foundation (Grant No. 4144086). |
Corresponding Authors:
Zhang Jin-Chuan, Liu Feng-Qi
E-mail: zhangjinchuan@semi.ac.cn;fqliu@semi.ac.cn
|
Cite this article:
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国) Very low threshold operation of quantum cascade lasers 2015 Chin. Phys. B 24 024212
|
[1] |
Kosterev A A and Tittel F K 2002 IEEE J. Quantum Electron. 38 582
|
[2] |
Nelson D D, Shorter J H, McManus J B and Zahniser M S 2002 Appl. Phys. B: Lasers Opt. 75 343
|
[3] |
Namjou K, Cai S, Whittaker E A, Faist J, Gmachl C, Capasso F, Sivco D L and Cho A Y 1998 Opt. Lett. 23 219
|
[4] |
Liu F Q, Li L, Wang L J, Liu J Q, Zhang W, Zhang Q D, Liu W F, Lu Q Y and Wang Z G 2009 Appl. Phys. A 97 527
|
[5] |
Xie f, Caneau C G, LeBlanc H P, Visovsky N J, Coleman S, Hughes L C and Zah C 2009 Appl. Phys Lett. 95 091110
|
[6] |
Lyakh A, Maulini R, Tsekoun A, Go R, Pflügl C, Diehl L, Wang Q J, Capasso F and Patel C K N 2009 Appl. Phys. Lett. 95 141113
|
[7] |
Wittmann A, Bonetti Y, Fischer M, Faist J, Blaser S and Gini E 2009 IEEE Photon. Technol. Lett. 21 12
|
[8] |
Bai Y, Slivken S, Darvish S R, Haddadi A and Gokden B 2009 Appl. Phys. Lett. 95 221104
|
[9] |
Lu Q Y, Guo W H, Zhang W, Wang L J, Liu J Q, Li L, Liu F Q and Wang Z G 2010 Appl. Phys. Lett. 96 051112
|
[10] |
Sirtori C, Faist J, Capasso F, Sivco D L, Hutchinson A L, George Chu S N and Cho A Y 1996 Appl. Phys. Lett. 68 1745
|
[11] |
Pflugl C, SchrenkW, Anders S, Strasser G, Becker C, Sirtori C, Bonetti Y and Muller A 2003 Appl. Phys. Lett. 83 4698
|
[12] |
Cathabard O, Teissier R, Devenson J, Moreno J C and Baranov A N 2010 Appl. Phys. Lett. 96 141110
|
[13] |
Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
|
[14] |
Bai Y, Bandyopadhyay N, Tsao S, Slivken S and Razeghi M 2011 Appl. Phys. Lett. 98 181102
|
[15] |
Wang X J, Fan J Y, Tanbun-Ek T and Choa F S 2007 Appl. Phys. Lett. 90 211103
|
[16] |
Zhang J C, Wang L J, Chen J Y, Zhao L H, Liu F Q, Liu J Q, Li L and Wang Z G 2011 Electron. Lett. 47 1338
|
[17] |
Zhang J C, Liu F Q, Tan S, Yao D Y, Wang L J, Liu J Q, Li L and Wang Z G 2012 Appl. Phys. Lett. 100 112105
|
[18] |
Faist J, Hofstetter D, Beck M, Aellen T, Rochat M and Blaser S 2002 IEEE J. Quantum Electron. 38 533
|
[19] |
Hofstetter D, Beck M, Aellen T and Faist J 2001 Appl. Phys. Lett. 78 396
|
[20] |
Liu F Q, Zhang Y Z, Zhang Q S, Ding D, Xu B and Wang Z G 2000 Semicond. Sci. Technol. 15 L44
|
[21] |
Yu J S, Evans A, Slivken S, Darvish S R and Razeghi M 2006 Appl. Phys. Lett. 88 251118
|
[22] |
Zhang J C, Liu F Q, Wang L J, Chen J Y, Zhai S Q, Liu J Q and Wang Z G 2013 IEEE Photon. Technol. Lett. 25 686
|
[23] |
Tsujino S, Borak A, Müller E, Scheinert M, Falub C V, Sigg H, Grützmacher D, Giovannini M and Faist J 2005 Appl. Phys. Lett. 86 062113
|
[24] |
Maulini R, Lyakh A, Tsekoun A, Go R, Pflügl C, Diehl L, Capasso F and Patel C K N 2009 Appl. Phys. Lett. 95 151112
|
[25] |
Maulini R, Lyakh A, Tsekoun A, Go R and Patel C K N 2011 Electron. Lett. 47 395
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|