Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110309    DOI: 10.1088/1674-1056/23/11/110309
GENERAL Prev   Next  

Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle

Li Zhi-Yuan (李志远)
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.

Keywords:  wave-particle duality      complementarity principle      atom interferometer  
Received:  02 September 2014      Revised:  09 September 2014      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.75.Dg (Atom and neutron interferometry)  
  42.50.Xa (Optical tests of quantum theory)  
Fund: 

Project supported by the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and Chinese Academy of Sciences.

Corresponding Authors:  Li Zhi-Yuan     E-mail:  lizy@aphy.iphy.ac.cn

Cite this article: 

Li Zhi-Yuan (李志远) Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle 2014 Chin. Phys. B 23 110309

[1] Bohr N 1928 Naturwissenschaften 16 245
[2] Bohr N 1928 Nature 121 580
[3] Bohr N 1983 Quantum Theory and Measurement (Wheeler J A and Zurek W H, ed.) (Princeton: Princeton Univ. Press) pp. 9-49
[4] Heisenberg W 1930 The Physical Principles of the Quantum Theory (Chicago: University of Chicago Press)
[5] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[6] Schrödinger E 1935 Proc. Camb. Philos. Soc. 31 555
[7] Bohm D A 1952 Phys. Rev. 85 166; 85 180
[8] de Brogliem L 1960 Non-linear Wave Mechanics, a Causal Interpretation (Amsterdam: Elsevier)
[9] Von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton: Princeton University Press)
[10] Stapp H P 1972 Am. J. Phys. 40 1098
[11] Everett Ⅲ H 1957 Rev. Mod. Phys. 29 454
[12] Feynman R, Leighton R and Sands M 1965 The Feynman Lectures on Physics Vol. Ⅲ, Chapter 1 (Reading: Addison Wesley)
[13] Jammer M 1974 The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective (New York: Wiley)
[14] Bell J S 1988 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[15] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[16] Wheeler J A and Zurek W H 1983 Quantum Theory and Measurement (Princeton: Princeton University)
[17] Zurek W H 2003 Rev. Mod. Phys. 75 715
[18] Schlosshauer M 2004 Rev. Mod. Phys. 76 1267
[19] Jönsson C 1961 Z. Phys. 161 454
[20] Summhammer J, Badurek G, Rauch H, Kischko U and Zeilinger A 1983 Phys. Rev. A 27 2523
[21] Zeilinger A, Gahler R, Shull C G, Theimer W and Mampe W 1988 Rev. Mod. Phys. 60 1067
[22] Carnal O and Mlynek J 1991 Phys. Rev. Lett. 66 2689
[23] Eichman U, Bergquist J C, Bollinger J J, Gilligan J M, Itano W M and Wineland D J 1993 Phys. Rev. Lett. 70 2359
[24] Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680
[25] Andrews M R et al 1997 Science 275 637
[26] Hackermuller L, Uttenthaler S, Hornberger K, Reiger E, Brezger B, Zeilinger A and Arndt M 2003 Phys. Rev. Lett. 91 090408
[27] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[28] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge Univ. Press)
[29] Scully M O, Englert B G and Walther H 1991 Nature 351 111
[30] Storey P, Tan S, Collett M and Walls D 1994 Nature 367 626
[31] Englert B G, Scully M O and Walther H 1995 Nature 375 367
[32] Storey E P, Tan S M, Collett M J and Walls D F 1995 Nature 375 368
[33] Wiseman H and Harrison F 1995 Nature 377 584
[34] Durr S, Nonn T and Rempe G 1998 Nature 395 33
[35] Bertet P, Osnaghi S, Rauschenbeutel A, Nogues G, Auffeves A, Brune M, Raimond J M and Haroche S 2001 Nature 411 166
[36] Wheeler J A 1978 Mathematical Foundations of Quantum Theory (Marlow E R, ed.) (New York: Academic Press) pp. 9-48; 1979 Problems in the Formulations of Physics (di Francia G T, ed.) (Amsterdam: North-Holland)
[37] Scully M O and Druhl K 1982 Phys. Rev. A 25 2208
[38] Hellmuth T, Walther H, Zajonc A and Schleich W 1987 Phys. Rev. A 35 2532
[39] Lawson-Daku B J, Asimov R, Gorceix O, Miniatura Ch, Robert J and Baudon J 1996 Phys. Rev. A 54 5042
[40] Herzog T J, Kwiat P G, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 3034
[41] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[42] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[43] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[44] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600
[45] Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 338 637
[46] Peruzzo A, Shadbolt P, Brunner N, Popescu S and O'Brien J L 2012 Science 338 634
[47] Jaynes E 1980 Foundations of Radiation Theory and Quantum Electrodynamics (Barut A O, ed.) (New York: Plenum) pp. 37-43
[48] Leggett A J 2008 Reports on Progress in Physics 71 022001
[49] Haroche S 2013 Rev. Mod. Phys. 85 1083
[50] Wineland D J 2013 Rev. Mod. Phys. 85 1103
[51] Shadbolt P, Mathews J C F, Laing A and O'Brien J L 2014 Nat. Phys. 10 278
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[3] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[4] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[5] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[6] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[7] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[8] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[9] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[10] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[11] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[12] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[13] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[14] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[15] Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Lin Qiang (林强). Chin. Phys. B, 2015, 24(11): 113704.
No Suggested Reading articles found!