Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123701    DOI: 10.1088/1674-1056/25/12/123701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Investigation of the thermal adaptability for a mobile cold atom gravimeter

Qi-Yu Wang(王启宇)1, Zhao-Ying Wang(王兆英)1, Zhi-Jie Fu(付志杰)1, Qiang Lin(林强)1,2
1. Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2. Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

The cold atom gravimeter offers the prospect of a new generation of inertial sensors for field applications. We accomplish a mobile atom gravimeter. With the compact and stable system, a sensitivity of 1.4×10-7 g·Hz-1/2 is achieved. Moreover, a continuous gravity monitoring of 80 h is carried out. However, the harsh outdoor environment is a big challenge for the atom gravimeter when it is for field applications. In this paper, we present the preliminary investigation of the thermal adaptability for our mobile cold atom gravimeter. Here, we focus on the influence of the air temperature on the performance of the atom gravimeter. The responses to different factors (such as laser power, fiber coupling efficiency, etc.) are evaluated when there is a great temperature shift of 10℃. The result is that the performances of all the factors deteriorate to different extent, nevertheless, they can easily recover as the temperature comes back. Finally, we conclude that the variation of air temperature induces the increase of noise and the system error of the atom gravimeter as well, while the process is reversible with the recovery of the temperature.

Keywords:  atom gravimeter      the environmental adaptability      atom interferometer  
Received:  02 June 2016      Revised:  18 August 2016      Accepted manuscript online: 
PACS:  37.25.+k (Atom interferometry techniques)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the National High Technology Research and Development Program of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2016FZA3004).

Corresponding Authors:  Zhao-Ying Wang, Qiang Lin     E-mail:  zhaoyingwang@zju.edu.cn;qlin@zju.edu.cn

Cite this article: 

Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强) Investigation of the thermal adaptability for a mobile cold atom gravimeter 2016 Chin. Phys. B 25 123701

[1] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
[2] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[3] Kasevich M and Chu S 1992 Appl. Phys. B 54 321
[4] Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Wang Y B, Xu P, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 013701
[5] Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[6] Wicht A, Hensley J M, Sarajlic E and Chu S 2002 Phys. Scr. 2002 82
[7] Holmgren W F, Revelle M C, Lonij V P and Cronin A D 2010 Phys. Rev. A 81 053607
[8] Müller H, Peters A and Chu S 2010 Nature 463 926
[9] Hohensee M, Lan S Y, Houtz R, Chan C, Estey B, Kim G, Kuan P C and Müller H 2011 Gen. Relativ. Grav. 43 1905
[10] Herrmann S, Dittus H and Lämmerzahl C 2012 Class. Quantum Grav. 29 184003
[11] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610
[12] Yu N, Kohel J M, Kellogg J R and Maleki L 2006 Appl. Phys. B 84 647
[13] Hogan J M, Johnson D M, Dickerson S, Kovachy T, Sugarbaker A, Chiow S W, Graham P W, Kasevich M A, Saif B and Rajendran S 2011 Gen. Relativ. Grav. 43 1953
[14] Tino G M, Sorrentino F, Aguilera D, Battelier B, Bertoldi A, Bodart Q, Bongs K, Bouyer P, Braxmaier C and Cacciapuoti L 2013 Nucl. Phys. B (Proc. Suppl.) 243 203
[15] Geiger R, Méoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M and Bidel Y 2011 Nat. Commun. 2 474
[16] Aguilera D, Ahlers H, Battelier B, Bawamia A, Bertoldi A, Bondarescu R, Bongs K, Bouyer P, Braxmaier C and Cacciapuoti L 2014 Class. Quantum Grav. 31 115010
[17] Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V and Peters A 2011 Gyroscopy Navig. 2 170
[18] Bidel Y, Carraz O, Charri'ere R, Cadoret M, Zahzam N and Bresson A 2013 Appl. Phys. Lett. 102 144107
[19] Farah T, Guerlin C, Landragin A, Bouyer P, Gaffet S, Dos Santos F P and Merlet S 2014 Gyroscopy Navig. 5 266
[20] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
[21] Wang Q Y, Wang Z Z, Fu Z J, Liu W Y and Lin Q 2016 Opt. Commun. 358 82
[22] Schuldt T, Schubert C, Krutzik M, Bote L G, Gaaloul N, Hartwig J, Ahlers H, Herr W, Posso-Trujillo K and Rudolph J 2015 Exp. Astron. 39 167
[23] Milke A, Kubelka-Lange A, Guerlebeck N, Rievers B, Herrmann S, Schuldt T and Braxmaier C 2014 Rev. Sci. Instrum. 85 083105
[24] Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A and Dos Santos F P 2008 Appl. Phys. B 92 133
[25] Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y and Hu Z K 2015 Chin. Phys. B 24 050401
[26] Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P and Lin Q 2014 Metrologia 51 452
[27] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[3] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[4] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[5] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[6] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[7] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[8] Effect of Raman-pulse duration related to the magnetic field gradient in high-precision atom gravimeters
Yuan Cheng(程源), Yu-Jie Tan(谈玉杰), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(3): 030303.
[9] Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
Qiyu Wang(王启宇), Jinyang Feng(冯金扬), Shaokai Wang(王少凯), Wei Zhuang(庄伟), Yang Zhao(赵阳), Lishuang Mou(牟丽爽), Shuqing Wu(吴书清). Chin. Phys. B, 2018, 27(12): 123701.
[10] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[11] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[12] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[13] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[14] Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Lin Qiang (林强). Chin. Phys. B, 2015, 24(11): 113704.
[15] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
No Suggested Reading articles found!