|
|
Comparison of the sensitivities for atom interferometers in two different operation methods |
Xiao-Chun Duan(段小春)1, De-Kai Mao(毛德凯)1, Xiao-Bing Deng(邓小兵)1, Min-Kang Zhou(周敏康)1, Cheng-Gang Shao(邵成刚)1, Zhu Zhu(祝竺)2, Zhong-Kun Hu(胡忠坤)1 |
1 MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Shanghai Institute of Satellite Engineering, Shanghai 201109, China |
|
|
Abstract We investigated the sensitivities of atom interferometers in the usual fringe-scanning method (FSM) versus the fringe-locking method (FLM). The theoretical analysis shows that for typical noises in atom interferometers, the FSM will degrade the sensitivity while the FLM does not. The sensitivity-improvement factor of the FLM over the FSM depends on the type of noises, which is validated by numerical simulations. The detailed quantitative analysis on this fundamental issue is presented, and our analysis is readily extendable to other kinds of noises as well as other fringe shapes in addition to a cosine one.
|
Received: 03 August 2017
Revised: 20 September 2017
Accepted manuscript online:
|
PACS:
|
37.25.+k
|
(Atom interferometry techniques)
|
|
07.05.Kf
|
(Data analysis: algorithms and implementation; data management)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41127002, 11574099, 41504034, and 11474115) and the National Basic Research Program of China (Grant No. 2010CB832806). |
Corresponding Authors:
Zhong-Kun Hu
E-mail: zkhu@hust.edu.cn
|
Cite this article:
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤) Comparison of the sensitivities for atom interferometers in two different operation methods 2018 Chin. Phys. B 27 013701
|
[1] |
Weiss D S, Young B C and Chu S 1994 Appl. Phys. B 59 217
|
[2] |
Wicht A, Hensley J M, Sarajlic E and Chu S 2002 Phys. Scripta T102 82
|
[3] |
Cladé P, de Mirandes E, Cadoret M, et al. 2006 Phys. Rev. Lett. 96 033001
|
[4] |
Müller H, Chiow S W, Long Q, Vo C and Chu S 2006 Appl. Phys. B 84 633
|
[5] |
Cadoret M, de Mirandes E, Cladé P, et al. 2008 Phys. Rev. Lett. 101 230801
|
[6] |
Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
|
[7] |
Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M and Tino G M 2008 Phys. Rev. Lett. 100 050801
|
[8] |
Stuhler J, Fattori M, Petelski T and Tino G M 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S75
|
[9] |
Bertoldi A, Lamporesi G, Cacciapuoti L, et al. 2006 Eur. Phys. J. D 40 271
|
[10] |
Sorrentino F, Lien Y H, Rosi G, Cacciapuoti L, Prevedelli M and Tino G M 2010 New J. Phys. 12 095009
|
[11] |
Fattori M, Lamporesi G, Petelski T, Stuhler J and Tino G M 2003 Phys. Lett. A 318 184
|
[12] |
Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M and Tino T M 2014 Nature 510 518
|
[13] |
Dimopoulos S, Graham P W, Hogan J M, Kasevich M A and Rajendran S 2008 Phys. Rev. D 78 122002
|
[14] |
Bonnin A, Zahzam N, Bidel Y and Bresson A 2013 Phys. Rev. A 88 043615
|
[15] |
Gaaloul N, Ahlers H, Schulze T A, et al. 2010 Acta Astronautica 67 1059
|
[16] |
Dimopoulos S, Graham P W, Hogan J M, Kasevich M A and Rajendran S 2009 Phys. Lett. B 678 37
|
[17] |
Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X and Tino G M 2014 Phys. Rev. Lett. 113 023005
|
[18] |
Clairon A, Laurent P, Santarelli G, et al. 1995 IEEE Trans. Instrum. 44 128
|
[19] |
Levi F, Lorini L, Calonico D and Godone A 2004 IEEE Trans. Ultrason. Ferroelectrics Freq. Control 51 1216
|
[20] |
Wynands R and Weyers S 2005 Metrologia 42 S64
|
[21] |
Vian C, Rosenbusch P, Marion H, et al. 2005 IEEE Trans. Instrum. Meas. 54 833
|
[22] |
Szymaniec K, Park S E, Marra G and Chalupczak W 2010 Metrologia 47 363
|
[23] |
Gerginov V, Nemitz N, Weyers S, Schröder R, Griebsch D and Wynands R 2010 Metrologia 47 65
|
[24] |
Heavner T P, Donley E A, Levi F, et al. 2014 Metrologia 51 174
|
[25] |
Zhou M K, Hu Z K, Duan X C, et al. 2010 Phys. Rev. A 82 061602
|
[26] |
Hu Z K, Duan X C, Zhou M K, et al. 2011 Phys. Rev. A 84 013620
|
[27] |
Peters A, Chung K Y and Chu S 1999 Nature 400 849
|
[28] |
Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
|
[29] |
Le Gouüt J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A and Dos Santos F P 2008 Appl. Phys. B 92 133
|
[30] |
Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
|
[31] |
Müller H, Chiow S W, Herrmann S and Chu S 2008 Phys. Rev. Lett. 100 031101
|
[32] |
Zhou M K, Pelle B, Hilico A and dos Santos F P 2013 Phys. Rev. A 88 013604
|
[33] |
Bidel Y, Carraz O, Charriére R, Cadoret M and Zahzam N 2013 Appl. Phys. Lett. 102 144107
|
[34] |
Altin P A, Johnsson M T, Negnevitsky V, et al. 2013 New J. Phys. 15 023009
|
[35] |
Zhou M K, Hu Z K, Duan X C, et al. 2012 Phys. Rev. A 86 043630
|
[36] |
Hu Z K, Sun B L, Duan X C, et al. 2013 Phys. Rev. A 88 043610
|
[37] |
Cheinet P, Dos Santos F P, Petelski T, et al. 2006 Appl. Phys. B 84 643
|
[38] |
Merlet S, Le Gouüt J, Bodart Q, et al. 2009 Metrologia 46 87
|
[39] |
Bevington P R and Robinson D K 2003 Data Reduction and Error Analysis for the Physical Sciences (3rd edn.) (New York: McGraw-Hill) p. 102
|
[40] |
Gauguet A, Canuel B, Lévéque T, Chaibi W and Landragin A 2009 Phys. Rev. A 80 063604
|
[41] |
Itano W M, Bergquist J C, Bollinger J J, et al. 2009 Phys. Rev. A 47 3554
|
[42] |
Dos Santos F P 2015 Phys. Rev. A 91 063615
|
[43] |
Kellogg J R, Yu N, Kohel J M, Thompson R J, Aveline D C and Maleki L 2007 J. Mod. Opt. 54 2533
|
[44] |
Lan S Y, Kuan P C, Estey B, Haslinger P and Muller H 2012 Phys. Rev. Lett. 108 090402
|
[45] |
Duan X C, Zhou M K, Mao D K, et al. 2014 Phys. Rev. A 90 023617
|
[46] |
Foster G T, Fixler J B, McGuirk J M and Kasevich M A 2002 Opt. Lett. 27 951
|
[47] |
Stockton J K, Wu X and Kasevich M A 2007 Phys. Rev. A 76 033613
|
[48] |
Varoquaux G, Nyman R A, Geiger R, et al. 2009 New J. Phys. 11 113010
|
[49] |
Tarallo M G, Mazzoni T, Poli N, et al. 2014 Phys. Rev. Lett. 113 023005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|