Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 113704    DOI: 10.1088/1674-1056/24/11/113704
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation

Cheng Bing (程冰)a, Wang Zhao-Ying (王兆英)a, Xu Ao-Peng (许翱鹏)a, Wang Qi-Yu (王启宇)a, Lin Qiang (林强)a b
a Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.
Keywords:  atom interferometer      phase extraction      phase demodulation  
Received:  10 May 2015      Revised:  27 June 2015      Accepted manuscript online: 
PACS:  37.25.+k (Atom interferometry techniques)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).
Corresponding Authors:  Wang Zhao-Ying, Lin Qiang     E-mail:  zhaoyingwang@zju.edu.cn;qlin@zjut.edu.cn

Cite this article: 

Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Lin Qiang (林强) Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation 2015 Chin. Phys. B 24 113704

[1] Cladé P, Mirandes E, Cadoret M, Khélifa S G, Schwob C, Nez F, Julien L and Biraben F 2006 Phys. Rev. Lett. 96 033001
[2] Fixler J B, Foster G T, McGuirk J M and Kasevich M A 2007 Science 315 74
[3] Dimopoulos S, Graham PW, Hogan JMand KasevichMA 2007 Phys. Rev. Lett. 98 111102
[4] Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M and Tino G M 2008 Phys. Rev. Lett. 100 050801
[5] Dimopoulos S, Graham PW, Hogan J M, KasevichMA and Rajendran S 2009 Phys. Rev. Lett. 678 37
[6] Hohensee M A, Chu S, Peters A and Müller H 2011 Phys. Rev. Lett. 106 151102
[7] Kasevich M A and Chu S 1992 Appl. Phys. B 54 321
[8] Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A and Pereira Dos Santos F 2008 Appl. Phys. B 92 133
[9] Müller H, Chiow S W, Herrmann S, Chu S and Chung K Y 2008 Phys. Rev. Lett. 100 031101
[10] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[11] Snadden M J, McGuirk J M, Bouyer P, Haritos K G and Kasevich M A 1998 Phys. Rev. Lett. 81 971
[12] McGuirk J, Foster G T, Fixler J B, Snadden M and Kasevich M A 2002 Phys. Rev. A 65 033608
[13] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610
[14] Bodart Q, Merlet S, Malossi N, Pereira Dos Santos F, Bouyer P and Landragin A 2010 Appl. Phys. Lett. 96 134101
[15] Merlet S, Bodart Q, Malossi N, Landragin A, Pereira Dos Santos F, Gitlein O and Timmen L 2010 Metrologia 47 L9
[16] Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N and Bresson A 2013 Appl. Phys. Lett. 102 144107
[17] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
[18] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[19] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Pereira Dos Santos F 2011 New J. Phys. 13 065025
[20] Merlet S, Le Gouët J, Bodart Q, Clairon A, Landragin A, Pereira Dos Santos F and Rouchon P 2009 Metrologia 46 87
[21] Duan X C, Zhou M K, Mao D K, Yao H B, Deng X B, Luo J and Hu Z K 2014 Phys. Rev. A 90 023617
[22] Stockton J K, Wu X and Kasevich M A 2007 Phys. Rev. A 76 033613
[23] Foster G T, Fixler J B, McGuirk JMand KasevichMA 2002 Opt. Lett. 27 951
[24] Chen X, Zhong J Q, Song H W, Zhu L, Wang J and Zhan M S 2014 Phys. Rev. A 90 023609
[25] Wu B,Wang Z Y, Cheng B,Wang Q Y, Xu A P and Lin Q 2013 J. Phys. B: At. Mol. Opt. Phys. 47 015001
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[3] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[4] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[5] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[6] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[7] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[8] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[9] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[10] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[11] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[12] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[13] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
[14] Dynamic splitting and merging of an atom cloud on an atom chip
Ke Min(柯敏),Yan Bo(颜波), Cheng Feng(程峰), and Wang Yu-Zhu(王育竹). Chin. Phys. B, 2009, 18(11): 4823-4828.
No Suggested Reading articles found!