Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080302    DOI: 10.1088/1674-1056/24/8/080302
GENERAL Prev   Next  

Wave–particle duality in a Raman atom interferometer

Jia Ai-Ai (贾爱爱)a b, Yang Jun (杨俊)a, Yan Shu-Hua (颜树华)a, Hu Qing-Qing (胡青青)a, Luo Yu-Kun (罗玉昆)a, Zhu Shi-Yao (朱诗尧)b
a College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China;
b Beijing Computational Science Research Center, Beijing 100084, China
Abstract  We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ-π-π/2 type of atom interferometer, we find that the visibility (V) and predictability (P) still satisfy the duality relation, P2+V2 ≤ 1.
Keywords:  complementarity      wave–particle duality      atom interferometer      Raman pulse  
Received:  02 December 2014      Revised:  26 January 2015      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Xa (Optical tests of quantum theory)  
  07.60.Ly (Interferometers)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51275523) and the Special Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20134307110009).
Corresponding Authors:  Yang Jun     E-mail:  john323@163.com

Cite this article: 

Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧) Wave–particle duality in a Raman atom interferometer 2015 Chin. Phys. B 24 080302

[1] Bohr N 1928 Naturwissenschaften 16 245
[2] Scully M O, Englert B G and Walther H 1991 Nature 351 111
[3] Englert B G, Scully M O and Walther H 1995 Nature 375 367
[4] Storey E P, Tan S M, Collett M J and Walls D F 1994 Nature 367 626
[5] Storey E P, Tan S M, Collett M J and Walls D F 1995 Nature 375 368
[6] Glauber R J 1986 Ann. Acad. Sci. NY 480 336
[7] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[8] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[9] Englert B G 1996 Phys. Rev. Lett. 77 2154
[10] Liu H Y, Huang J H, Gao J R, Zubairy M S and Zhu S Y 2012 Phys. Rev. A 85 022106
[11] Huang J H, Liu H Y, Gao J R, Zubairy M S and Zhu S Y 2013 Phys. Rev. A 88 013828
[12] Zhang Z X, Wang C Y, Shen X H, Li X Q and Wu S G 2014 Chin. Phys. B 23 109401
[13] Menzel R, Heuer A, Puhlmann D and Schleich W P 2012 Proc. Natl. Acad. Sci. USA 109 9314
[14] Menzel R, Heuer A, Puhlmann D, Dechoum K, Hillery M, Spähn M J A and Schleich W P 2013 J. Mod. Opt. 60 86
[15] Marlow A R 1978 Mathematical Foundations of Quantum Mechanics (New York: Academic Press) pp. 9–48
[16] Wheeler J A and Zurek W H 1984 Quantum Theory and Measurement (New Jersey: Princeton University Press) pp. 182–213
[17] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[18] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[19] Huang J H, Wölk S, Zhu S Y and Zubairy M S 2013 Phys. Rev. A 87 022107
[20] Jia A A, Huang J H, Feng W, Zhang T C and Zhu S Y 2014 Chin. Phys. B 23 030307
[21] Jia A A, Huang J H, Zhang T C and Zhu S Y 2014 Phys. Rev. A 89 042103
[22] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[23] Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
[24] Dürr S, Nonn T and Rempe G 2000 Opt. Commun. 179 323
[25] de Broglie L 1924 "Recherches sur la theorie des quanta" (Research on quantum theory), Ph. D Thesis (Paris: University of Sorbonne)
[26] Ramsey N F 1950 Phys. Rev. 78 695
[27] Carnal O and Mlynek J 1991 Phys. Rev. Lett. 66 2689
[28] Keith D W, Ekstrom C R, Turchette Q A and Pritchard D E 1991 Phys. Rev. Lett. 66 2693
[29] Riehle F, Kisters Th, Witte A and Helmcke J 1991 Phys. Rev. Lett. 67 177
[30] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
[31] Kasevich M and Chu S 1992 Appl. Phys. B 54 321
[32] Zhou M K, Hu Z K, Duan X C, Sun B L, Zhao J B and Luo J 2009 Front. Phys. China 4 170
[33] Duan X C 2011 "Principle experiment of measuring gravity gradient by atom interferometer," Ph. D Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[34] Schmidt M 2011 "A mobile high-precision gravimeter based on atom interferometry", Ph. D Thesis (Berlin: Humboldt-University zu Berlin)
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[3] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[4] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[5] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[6] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[7] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[8] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[9] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[10] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[11] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[12] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[13] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[14] Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Lin Qiang (林强). Chin. Phys. B, 2015, 24(11): 113704.
[15] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
No Suggested Reading articles found!