|
|
Wave–particle duality in a Raman atom interferometer |
Jia Ai-Ai (贾爱爱)a b, Yang Jun (杨俊)a, Yan Shu-Hua (颜树华)a, Hu Qing-Qing (胡青青)a, Luo Yu-Kun (罗玉昆)a, Zhu Shi-Yao (朱诗尧)b |
a College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China; b Beijing Computational Science Research Center, Beijing 100084, China |
|
|
Abstract We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ-π-π/2 type of atom interferometer, we find that the visibility (V) and predictability (P) still satisfy the duality relation, P2+V2 ≤ 1.
|
Received: 02 December 2014
Revised: 26 January 2015
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
07.60.Ly
|
(Interferometers)
|
|
32.80.-t
|
(Photoionization and excitation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51275523) and the Special Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20134307110009). |
Corresponding Authors:
Yang Jun
E-mail: john323@163.com
|
Cite this article:
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧) Wave–particle duality in a Raman atom interferometer 2015 Chin. Phys. B 24 080302
|
[1] |
Bohr N 1928 Naturwissenschaften 16 245
|
[2] |
Scully M O, Englert B G and Walther H 1991 Nature 351 111
|
[3] |
Englert B G, Scully M O and Walther H 1995 Nature 375 367
|
[4] |
Storey E P, Tan S M, Collett M J and Walls D F 1994 Nature 367 626
|
[5] |
Storey E P, Tan S M, Collett M J and Walls D F 1995 Nature 375 368
|
[6] |
Glauber R J 1986 Ann. Acad. Sci. NY 480 336
|
[7] |
Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
|
[8] |
Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
|
[9] |
Englert B G 1996 Phys. Rev. Lett. 77 2154
|
[10] |
Liu H Y, Huang J H, Gao J R, Zubairy M S and Zhu S Y 2012 Phys. Rev. A 85 022106
|
[11] |
Huang J H, Liu H Y, Gao J R, Zubairy M S and Zhu S Y 2013 Phys. Rev. A 88 013828
|
[12] |
Zhang Z X, Wang C Y, Shen X H, Li X Q and Wu S G 2014 Chin. Phys. B 23 109401
|
[13] |
Menzel R, Heuer A, Puhlmann D and Schleich W P 2012 Proc. Natl. Acad. Sci. USA 109 9314
|
[14] |
Menzel R, Heuer A, Puhlmann D, Dechoum K, Hillery M, Spähn M J A and Schleich W P 2013 J. Mod. Opt. 60 86
|
[15] |
Marlow A R 1978 Mathematical Foundations of Quantum Mechanics (New York: Academic Press) pp. 9–48
|
[16] |
Wheeler J A and Zurek W H 1984 Quantum Theory and Measurement (New Jersey: Princeton University Press) pp. 182–213
|
[17] |
Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
|
[18] |
Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
|
[19] |
Huang J H, Wölk S, Zhu S Y and Zubairy M S 2013 Phys. Rev. A 87 022107
|
[20] |
Jia A A, Huang J H, Feng W, Zhang T C and Zhu S Y 2014 Chin. Phys. B 23 030307
|
[21] |
Jia A A, Huang J H, Zhang T C and Zhu S Y 2014 Phys. Rev. A 89 042103
|
[22] |
Dürr S, Nonn T and Rempe G 1998 Nature 395 33
|
[23] |
Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
|
[24] |
Dürr S, Nonn T and Rempe G 2000 Opt. Commun. 179 323
|
[25] |
de Broglie L 1924 "Recherches sur la theorie des quanta" (Research on quantum theory), Ph. D Thesis (Paris: University of Sorbonne)
|
[26] |
Ramsey N F 1950 Phys. Rev. 78 695
|
[27] |
Carnal O and Mlynek J 1991 Phys. Rev. Lett. 66 2689
|
[28] |
Keith D W, Ekstrom C R, Turchette Q A and Pritchard D E 1991 Phys. Rev. Lett. 66 2693
|
[29] |
Riehle F, Kisters Th, Witte A and Helmcke J 1991 Phys. Rev. Lett. 67 177
|
[30] |
Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
|
[31] |
Kasevich M and Chu S 1992 Appl. Phys. B 54 321
|
[32] |
Zhou M K, Hu Z K, Duan X C, Sun B L, Zhao J B and Luo J 2009 Front. Phys. China 4 170
|
[33] |
Duan X C 2011 "Principle experiment of measuring gravity gradient by atom interferometer," Ph. D Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
|
[34] |
Schmidt M 2011 "A mobile high-precision gravimeter based on atom interferometry", Ph. D Thesis (Berlin: Humboldt-University zu Berlin)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|