Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 128201    DOI: 10.1088/1674-1056/23/12/128201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition

Yang Wen (杨文), Feng Yan-Yan (冯艳艳), Jiang Cheng-Fa (江成发), Chu Wei (储伟)
Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract  The CoMgO and CoMnMgO catalysts are prepared by a co-precipitation method and used as the catalysts for the synthesis of carbon nanotubes (CNTs) through the catalytic chemical vapor deposition (CCVD). The effects of Mn addition on the carbon yield and structure are investigated. The catalysts are characterized by temperature programmed reduction (TPR) and X-ray diffraction (XRD) techniques, and the synthesized carbon materials are characterized by transmission electron microscopy (TEM) and thermo gravimetric analysis (TG). TEM measurement indicates that the catalyst CoMgO enclosed completely in the produced graphite layer results in the deactivation of the catalyst. TG results suggest that the CoMnMgO catalyst has a higher selectivity for CNTs than CoMgO. Meanwhile, different diameters of CNTs are synthesized by CoMnMgO catalysts with various amounts of Co content, and the results show that the addition of Mn avoids forming the enclosed catalyst, prevents the formation of amorphous carbon, subsequently promotes the growth of CNTs, and the catalyst with decreased Co content is favorable for the synthesis of CNTs with a narrow diameter distribution. The CoMnMgO catalyst with 40% Co content has superior catalytic activity for the growth of carbon nanotubes.
Keywords:  CoMnMgO catalyst      carbon nanotubes      chemical vapor deposition      methane decomposition  
Received:  16 June 2014      Revised:  28 July 2014      Accepted manuscript online: 
PACS:  82.33.Ya (Chemistry of MOCVD and other vapor deposition methods)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB201202).
Corresponding Authors:  Jiang Cheng-Fa, Chu Wei     E-mail:  jiangcf@scu.edu.cn;chuwei1965scu@163.com

Cite this article: 

Yang Wen (杨文), Feng Yan-Yan (冯艳艳), Jiang Cheng-Fa (江成发), Chu Wei (储伟) Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition 2014 Chin. Phys. B 23 128201

[1]Zheng L W, Hu L Q, Xiao X J, Yang F, Lin H and Guo T L 2011 Chin. Phys. B 20 128502
[2]Liu Z, Tabakman S, Welsher K and Dai H 2009 Nano Res. 2 85
[3]Pan X and Bao X H 2011 Accounts Chem. Res. 44 553
[4]Yang W, Chu W, Jiang C F, Wen J and Sun W J 2011 Chin. J. Catal. 32 1323
[5]Alexiadis VI, Boukos N and Verykios X E 2011 Mater. Chem. Phys. 128 96
[6]Vanyorek L S, Loche D, Katona H, Casula M F, Corrias A, Kónya Z N, Kukovecz A K and Kiricsi I 2011 J. Phys. Chem. C 115 5894
[7]Xu X, Huang S, Yang Z, Zou C, Jiang J and Shang Z 2011 Mater. Chem. Phys. 127 379
[8]Okamoto A and Shinohara H 2005 Carbon 43 431
[9]Inoue S and Kikuchi Y 2005 Chem. Phys. Lett. 410 209
[10]Ratkovic S, Vujicic D, Kiss E, Boskovic G and Geszti O 2011 Mater. Chem. Phys. 129 398
[11]Baba M, Sano H, Zheng G B and Uchiyama Y 2009 J. Ceram. Soc. Jpn. 117 654
[12]Jiang M, Koizumi N, Ozaki T and Yamada M 2001 Appl. Catal. A: Gen. 209 59
[13]Rümmeli M H, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk R J, Rellinghaus B, Büchner B and Pichler T 2007 J. Am. Chem. Soc. 129 15772
[14]Behr M J, Mkhoyan K A and Aydil E S 2010 ACS Nano 4 5087
[15]Sun L, Rodriguez-Manzo J A and Banhart F 2006 Appl. Phys. Lett. 89 263104
[16]Kuwana K, Endo H, Saito K, Qian D, Andrews R and Grulke E A 2005 Carbon 43 253
[17]Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba D N, Yumura M, Iijima S and Hata K 2008 Nano Lett. 8 4288
[18]Loebick C Z, Derrouiche S, Marinkovic N, Wang C, Hennrich F, Kappes M M, Haller G L and Pfefferle L D 2009 J. Phys. Chem. C 113 21611
[19]Maccallini E, Tsoufis T, Policicchio A, La Rosa S, Caruso T, Chiarello G, Colavita E, Formoso V, Gournis D and Agostino R G 2010 Carbon 48 3434
[20]Liu Y, Qian W Z, Zhang Q, Ning G Q, Luo G H, Wang Y, Wang D Z and Wei F 2009 Chem. Eng. Technol. 32 73
[21]Xu F, Sun L X, Zhang J, Qi Y N, Yang L N, Ru H Y, Wang C Y, Meng X, Lan X F, Jiao Q Z and Huang F L 2010 J. Therm. Anal. Calorim. 102 785
[22]Yang W, Sun W J, Chu W, Jiang, C F and Wen J 2012 Chin. Chem. Lett. 23 363
[23]Feng Y Y, Yang W, Chen S and Chu W 2014 Integr. Ferroelectr. 151 116
[24]Yang W, Feng Y Y and Chu W 2014 J. Nanotechnol. 2014 547030
[25]Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C, Jin C Q, Yang Z X and Du Y W 2009 Chin. Phys. Lett. 26 116
[26]Ran M F, Chu W, Wen J and Li Y F 2009 Chem. J. Chin. Univ. 2 003
[27]Chu W, Ran M F, Zhang X, Wang N, Wang Y F, Xie H P and Zhao X S 2013 J. Energ. Chem. 22 136
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[8] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[12] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[13] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[14] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[15] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
No Suggested Reading articles found!