Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114101    DOI: 10.1088/1674-1056/23/11/114101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An iterative analytic-numerical method for scattering from a target buried beneath a rough surface

Xu Run-Wen (徐润汶), Guo Li-Xin (郭立新), Wang Rui (王蕊)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  

An efficiently iterative analytical-numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.

Keywords:  boundary integral method (BIM)      Kirchhoff approximation (KA)      rough surface      target  
Received:  17 March 2014      Revised:  15 April 2014      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
Fund: 

Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 61225002), the Fundamental Research Funds for the Central Universities, China (Grant No. K50510070001), and the National Natural Science Foundation of China (Grant No. 61301070).

Corresponding Authors:  Xu Run-Wen     E-mail:  rwxu719@126.com

Cite this article: 

Xu Run-Wen (徐润汶), Guo Li-Xin (郭立新), Wang Rui (王蕊) An iterative analytic-numerical method for scattering from a target buried beneath a rough surface 2014 Chin. Phys. B 23 114101

[1] Wang X, Gan Y B and Li L W 2003 IEEE Antennas Wireless Propag. Lett. 2 319
[2] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050201
[3] Altuncu Y, Yapar A and Akduman I 2006 IEEE Trans. Geosci. Remote Sensing 44 1435
[4] El-Shenawee M 2003 IEEE Trans. Antennas Propag. 51 802
[5] Zhang Y M, Wang Y H and Guo L X 2010 Chin. Phys. B 19 054103
[6] Lawrence D E and Sarabandi K 2002 IEEE Trans. Antennas Propag. 50 1368
[7] Ren X C and Guo L X 2008 Chin. Phys. B 17 2491
[8] Fiaz M A, Frezza F, Pajewski L, Ponti C and Schettini G 2012 IEEE Trans. Antennas Propag. 60 2834
[9] Fiaz M A, Frezza F, Pajewski L, Ponti C and Schettini G 2013 Near Surface Geophysics 11 177
[10] Bourlier C, Pinel N and Kubické G 2013 J. Opt. Soc. Am. A 30 1727
[11] He S Y and Zhu G Q 2007 Microwave Opt. Tech. Lett. 49 2957
[12] García-Castillo L E, Gómez-Revuelto I and Sáez de Adana F 2005 Computer Methods in Applied Mechanics and Engineering 194 637
[13] Ye H X and Jin Y Q 2007 IEEE Trans. Geosci. Remote Sensing 45 1174
[14] Luo W, Zhang M, Zhou P and Yin H C 2010 Chin. Phys. B 19 084102
[15] Nie D and Zhang M 2010 Chin. Phys. B 19 074101
[16] Tsang L, Kong J A and Ding K H 2001 Scattering of Electromagnetic Waves: Numerical Simulations. (New York: Wiley Interscience) p. 124
[17] Wu Z S, Wang Y H and Guo L X 2005 Chin. Phys. Lett. 22 2808
[18] Thorsos E I 1988 J. Acoust. Soc. Am. 83 78
[1] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[2] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[3] Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA
Yi-Lin Xu(徐毅麟), Dong-Yu Li(李东彧), Ya-Dong Xia(夏亚东), Si-Yuan Zhang(张思源), Min-Jian Wu(吴旻剑), Tong Yang(杨童), Jun-Gao Zhu(朱军高), Hao Cheng(程浩), Chuan-Ke Wang(王传珂), Chen Lin(林晨), Ting-Shuai Li(李廷帅), and Xue-Qing Yan(颜学庆). Chin. Phys. B, 2022, 31(2): 025205.
[4] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[5] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[8] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
[9] First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility
Bo Yu(余波), Jiamin Yang(杨家敏), Tianxuan Huang(黄天晅), Peng Wang(王鹏), Wanli Shang(尚万里), Xiumei Qiao(乔秀梅), Xuewei Deng(邓学伟), Zhanwen Zhang(张占文), Zifeng Song(宋仔峰), Qi Tang(唐琦), Xiaoshi Peng(彭晓世), Jiabin Chen(陈家斌), Yulong Li(理玉龙), Wei Jiang(蒋炜), Yudong Pu(蒲昱东), Ji Yan(晏骥), Zhongjing Chen(陈忠靖), Yunsong Dong(董云松), Wudi Zheng(郑无敌), Feng Wang(王峰), Shaoen Jiang(江少恩), Yongkun Ding(丁永坤), Jian Zheng(郑坚). Chin. Phys. B, 2019, 28(9): 095203.
[10] New measurement of thick target yield for narrow resonance at Ex=9.17 MeV in the 13C(p, γ)14N reaction
Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Guang-Yong Fu(付光永), Di Wu(吴笛), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2019, 28(6): 060706.
[11] Quantum search for unknown number of target items by hybridizing fixed-point method with trail-and-error method
Tan Li(李坦), Shuo Zhang(张硕), Xiang-Qun Fu(付向群), Xiang Wang(汪翔), Yang Wang(汪洋), Jie Lin(林杰), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(12): 120301.
[12] Microdroplet targeting induced by substrate curvature
Hongguang Zhang(张红光), Zhenjiang Guo(郭振江), Shan Chen(陈珊), Bo Zhang(张博), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(9): 096801.
[13] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[14] A target group tracking algorithm based on a hybrid sensor network
Chun Zhang(张淳). Chin. Phys. B, 2018, 27(8): 080101.
[15] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
No Suggested Reading articles found!