Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017502    DOI: 10.1088/1674-1056/abb3e6
REVIEW Prev   Next  

Functionalized magnetic nanoparticles for drug delivery in tumor therapy

Ruo-Nan Li(李若男)1, Xian-Hong Da(达先鸿)1, Xiang Li (李翔)1,†, Yun-Shu Lu(陆云姝)2, Fen-Fen Gu(顾芬芬)3, and Yan Liu(刘艳)3
1 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2 Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; 3 Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Abstract  The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles (MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., pH-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy.
Keywords:  magnetic nanoparticles      tumor      drug carriers      targeted therapy  
Received:  10 June 2020      Revised:  28 August 2020      Accepted manuscript online:  01 September 2020
PACS:  75.47.Lx (Magnetic oxides)  
  75.90.+w (Other topics in magnetic properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072245, 61771092, and 81702588) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1419700).
Corresponding Authors:  Corresponding author. E-mail: xiangli@usst.edu.cn   

Cite this article: 

Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳) Functionalized magnetic nanoparticles for drug delivery in tumor therapy 2021 Chin. Phys. B 30 017502

1 Agiotis L, Theodorakos I, Samothrakitis S, Papazoglou S, Zergioti I and Raptis Y S 2016 J. Magn. Magn. Mater. 401 956
2 Mahmoudi M, Sant S, Wang B, Laurent S and Sen T 2011 Adv. Drug Deliv. Rev. 63 24
3 Elbialy N S, Fathy M M, Al-Wafi R, Darwesh R, Abdel-Dayem U A, Aldhahri M, Noorwali A and Al-Ghamdi A A 2019 Int. J. Pharm. 554 256
4 Mirza Z and Karim S 2019 Semin. Cancer Biol. 19 30177
5 Dafeh S R, Iranmanesh P and Salarizadeh P 2019 Mater. Sci. Eng. C 98 205
6 Li X, Lu W, Song Y, Wang Y, Chen A, Yan B, Yoshimura S and Saito H 2016 Sci. Rep. 6 22467
7 Moya C, Freire O I, Pérez N, Batlle X, Labartaaand A and Asenjo A 2015 Nanoscale 7 8110
8 Arsalani S, Guidelli E J, Silveira M A, Salmon C E G, Araujo J F D F, Bruno A C and Baffa O 2019 J. Magn. Magn. Mater. 475 458
9 Wang Z L, Ma H, Wang F, Li M, Zhang L G and Xu X H 2016 Chin. Phys. Lett. 33 107501
10 Gou G P, Gao Y, Li Y Z, Ma Q Y, Tu J and Z D 2020 Chin. Phys. B 29 034302
11 Wang N, Guan Y P, Yang L, Jia L W, Wei X T, Liu H Z and Guo C 2013 J. Colloid Interface Sci. 395 50
12 Rayegan A, Allafchian A, Sarsari I A and Kameli P 2018 Int. J. Biol. Macromol. 113 317
13 Dey C, Baishya K, Ghosh A, Goswami M M, Ghosh A and Mandal K 2017 J. Magn. Magn. Mater. 427 168
14 Teng Y, Du Y, Shi J and Pong P W T 2020 Curr. Appl. Phys. 20 320
15 Dhavale R P, Waifalkar P P, Sharma A, Dhavale R P, Sahoo S C, Kollu P, Chougale A D, Zahn D R T, Salvan G, Patil P S and Patil P B 2018 J. Colloid Interface Sci. 529 415
16 Shojaee P, Niroomand-Oscuii H, Sefidgar M and Alinezhad L 2020 J. Magn. Magn. Mater. 498 166089
17 Raj S, Khurana S, Choudhari R, Kesari K K, Kamal M A, Garg N, Ruokolainen J, Das B C and Kumar D 2019 Semin. Cancer Biol. 19 30216
18 Amani A, Begdelo J M, Yaghoubi H and Motallebinia S 2019 J. Drug Delivery Sci. Technol. 49 534
19 Zein R, Sharrouf W and Selting K 2020 J. Oncol. 2020 1
20 Ansari M, Bigham A, Hassanzadeh-Tabrizi S A and Ahangar H A 2017 J. Magn. Magn. Mater. 439 67
21 Hoshiar A K, Le TA, Amin F U, Kim M O and Yoon J 2017 J. Magn. Magn. Mater. 427 181
22 Roca A G, Gutiérrez L, Gavilàn H, Brollo M E F, Veintemillas-Verdaguer S and Morales M d P 2019 Adv. Drug Delivery Rev. 138 68
23 Wang X, Pan F, Xiang Z, Jia W W and Lu W 2020 Mater. Lett. 262 127187
24 Ayubi M, Karimi M, Abdpour S, Rostamizadeh K, Parsa M, Zamani M and Saedi A 2019 Mater. Sci. Eng. C 104 109810
25 Oroujeni M, Kaboudin B, Xia W, J?nsson P and Ossipov D A 2018 Prog. Org. Coat. 114 154
26 Gawali S L, Barick B K, Barick K C and Hassan P A 2017 J. Alloys Compd. 725 800
27 Cristofolini T, Dalmina M, Sierra J A, Silva A H, Pasa A A, Pittella F and Creczynski-Pasa T B 2020 Mater. Sci. Eng. C 109 110555
28 Ziegler-Borowska M 2019 Int. J. Biol. Macromol. 136 106
29 Ostroverkhov P V, Semkina A S, Naumenko V A, Plotnikova E A, Melnikov P A, Abakumova T O, Yakubovskaya R I, Mironov A F, Vodopyanov S S, Abakumov A M, Majouga A G, Grin M A, Chekhonin V P and Abakumov M A 2019 J. Colloid Interface Sci. 537 132
30 Wang F, Li X S, Li W T, Bai H, Gao Y, Ma J H, Liu W and Xi G C 2018 Mater. Sci. Eng. C 90 46
31 Xu C H, Ye P J, Zhou Y C, He D X, Wei H and Yu C Y 2020 Acta Biomater. 105 1
32 Wu J, Zhang Z X, Gu J, Zhou W X, Liang X Y, Zhou G Q, Han C C, Xu S S and Liu Y 2020 J. Controlled Release 320 337
33 Mar\'ín T, Montoya P, Arnache O, Pinal R and Calderòn J 2018 J. Magn. Magn. Mater. 458 355
34 Hyun D C 2015 Polymer 74 159
35 Kim G C, Li Y Y, Chu Y F, Cheng S X, Zhuo R X and Zhang X Z 2008 Eur. Polym. J. 44 2761
36 Bruniaux J, Allard-Vannier E, Aubrey N, Lakhrif Z, Djemaa S B, Eljack S, Marchais H, Herve-Aubert K, Chourpa I and David S 2019 Int. J. Pharm. 569 118572
37 Rosenblum D, Joshi N, Tao W, Karp J M and Peer D 2018 Nat. Commun. 9 1410
38 Avedian N, Zaaeri F, Daryasari M P, Akbari Javar H and Khoobi M 2018 J. Drug Delivery Sci. Technol. 44 323
39 Wang F, Li X S, Li W T, Bai H, Gao Y, Ma J H, Liu W and Xi G C
[1] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[5] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[6] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[7] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[8] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[9] Effects of 3.7 T–24.5 T high magnetic fields on tumor-bearing mice
Xiaofei Tian(田小飞), Ze Wang(王泽), Lei Zhang(张磊), Chuanying Xi(郗传英), Li Pi(皮雳), Ziping Qi(齐紫平), Qingyou Lu(陆轻铀), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(11): 118703.
[10] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[11] Stochastic responses of tumor—immune system with periodic treatment
Dong-Xi Li(李东喜), Ying Li(李颖). Chin. Phys. B, 2017, 26(9): 090203.
[12] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺). Chin. Phys. B, 2015, 24(6): 067503.
[13] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[14] Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model
Hao Meng-Li (郝孟丽), Xu Wei (徐伟), Gu Xu-Dong (谷旭东), Qi Lu-Yuan (戚鲁媛). Chin. Phys. B, 2014, 23(9): 090501.
[15] A progressive processing method for breast cancer detection via UWB based on an MRI-derived model
Xiao Xia (肖夏), Song Hang (宋航), Wang Zong-Jie (王宗杰), Wang Liang (王梁). Chin. Phys. B, 2014, 23(7): 074101.
No Suggested Reading articles found!