Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074102    DOI: 10.1088/1674-1056/27/7/074102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation

Dong-Min Zhang(张东民)1,2, Cheng Liao(廖成)1, Liang Zhou(周亮)1, Xiao-Chuan Deng(邓小川)1, Ju Feng(冯菊)1
1 Institute of Electromagnetics, Southwest Jiaotong University, Chengdu 610031, China;
2 Science and Technology on Electronic Information Control Laboratory, Chengdu 610031, China
Abstract  A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.
Keywords:  parabolic equation      rough surface      alternating direction implicit (ADI) difference      normalized radar cross section  
Received:  18 September 2017      Revised:  07 March 2018      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.-q (Applied classical electromagnetism)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61771407).
Corresponding Authors:  Cheng Liao     E-mail:  c.liao@swjtu.edu.cn

Cite this article: 

Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊) Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation 2018 Chin. Phys. B 27 074102

[1] Guo L X, Gou X Y and Zhang L B 2014 Chin. Phys. B 23 114102
[2] Pino M R, Landesa L, Rodriguez J L, Obelleiro and Burkholder R J 1999 IEEE Trans. Antennas Propagat. 47 961
[3] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050201
[4] Liu P and Jin Y Q 2004 IEEE Trans. Antennas Propagat. 52 1205
[5] Jia C G, Guo L X and Yang P J 2015 IEEE Antennas Wireless Propagat. Lett. 14 217
[6] Li J, Guo L X, Zeng H and Han X B 2009 Chin. Phys. B 18 2757
[7] Ye H X and Jin Y Q 2007 IEEE Trans. Geosci. Remote Sensing 45 1174
[8] Guo L X and Xu R W 2015 IEEE Trans. Geosci. Remote Sensing 53 3885
[9] Leontovich M and Fock V 1946 Acad. Sci. USSR. J. Phys. 10 13
[10] Levy M F and Zaporzhets A A 1998 J. Acoust. Soc. Am. 103 735
[11] Zaporozhet A A and Levy 1999 IEEE Trans. Antennas Propagat. 47 1688
[12] Levy M F 2000 Parabolic Equation Methods For Electromagnetic Wave Propagation (1st Edn.) (London:IEE Press) pp. 10-12
[13] Mallahzadeh A R, Soleimani M and Rashed-Mohassel J 2006 Progress in Electromagnetics Research, PIER 57 265
[14] He Z, Fan Z H, Ding D Z and Chen R S 2015 ACES Journal 30 496
[15] He Z and Chen R S 2015 IEEE Trans. Antennas Propagat. 63 2595
[16] He Z and Chen R S 2016 IEEE Trans. Antennas Propagat. 64 4777
[17] Pierson W J and Moskowitz L 1964 J. Geophys. Res. 69 5181
[18] Martelly R and Janaswamy R 2009 IEEE Trans. Antennas Propagat. 57 1759
[19] Collins M D 1993 J. Acoust. Soc. Am. 93 1736
[20] Collins M D and Evans R B 1992 J. Acoust. Soc. Am. 91 1357
[21] Ye H X and Jin Y Q 2005 IEEE Trans. Antennas Propagat. 53 1234
[1] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[2] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[3] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
[4] Theoretical framework for geoacoustic inversion by adjoint method
Yang Wang(汪洋), Xiao-Feng Zhao(赵小峰). Chin. Phys. B, 2019, 28(10): 104301.
[5] “Refractivity-from-clutter” based on local empirical refractivity model
Xiaofeng Zhao(赵小峰). Chin. Phys. B, 2018, 27(12): 128401.
[6] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[7] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[8] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[9] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao (董灏), Nie Yu-Feng (聂玉峰), Cui Jun-Zhi (崔俊芝), Wu Ya-Tao (武亚涛). Chin. Phys. B, 2015, 24(9): 090204.
[10] Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band
Guo Li-Xin (郭立新), Gou Xue-Yin (苟雪银), Zhang Lian-Bo (张连波). Chin. Phys. B, 2014, 23(11): 114102.
[11] An iterative analytic-numerical method for scattering from a target buried beneath a rough surface
Xu Run-Wen (徐润汶), Guo Li-Xin (郭立新), Wang Rui (王蕊). Chin. Phys. B, 2014, 23(11): 114101.
[12] Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves
Xiao Xia (肖夏), Tao Ye (陶冶), Sun Yuan (孙远). Chin. Phys. B, 2014, 23(10): 106803.
[13] Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces
Ji Wei-Jie (姬伟杰), Tong Chuang-Ming (童创明). Chin. Phys. B, 2013, 22(2): 020301.
[14] Estimation of lower refractivity uncertainty from radar sea clutter using Bayesian-MCMC method
Sheng Zheng (盛峥). Chin. Phys. B, 2013, 22(2): 029302.
[15] Application of a multiregion model to the EM scattering from a rough surface with or without a target above it
Wang An-Qi(王安琪), Guo Li-Xin(郭立新), and Chai Cao(柴草). Chin. Phys. B, 2011, 20(5): 050201.
No Suggested Reading articles found!