Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 025205    DOI: 10.1088/1674-1056/ac3735
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA

Yi-Lin Xu(徐毅麟)1, Dong-Yu Li(李东彧)2, Ya-Dong Xia(夏亚东)2, Si-Yuan Zhang(张思源)2, Min-Jian Wu(吴旻剑)2, Tong Yang(杨童)2, Jun-Gao Zhu(朱军高)2, Hao Cheng(程浩)2, Chuan-Ke Wang(王传珂)3, Chen Lin(林晨)2,†, Ting-Shuai Li(李廷帅)1,‡, and Xue-Qing Yan(颜学庆)2
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China;
3 Research Center of Laser Fusion, China Academy of Engineering Physics(CAEP), Mianyang 621900, China
Abstract  Electromagnetic pulses (EMPs) produced by the interaction of a TW femtosecond laser with solid targets at the Compact Laser Plasma Accelerator (CLAPA) are measured and interpreted. The statistical results confirm that the intensities of the EMPs are closely related to both target material and thickness. The signal of the titanium target is more abundant than that of the copper target with the same thickness, and the intensity of EMP is positively correlated with the target thickness for aluminium foil. With the boosted EMP radiations, the energy of accelerated protons is also simultaneously enhanced. In addition, EMPs emitted from the front of the target exceed those from the rear, which are also pertinent to the specific target position. The resonant waveforms in the target chamber are analyzed using the fast Fourier transform, and the local resonance and the attenuation lead to changes of the frequency spectra of EMPs with variation of detecting positions, which is well supported by the modeling results. The findings are beneficial to gaining insight into the mechanism of EMP propagation in a typical target chamber and providing more information for EMP shielding design.
Keywords:  laser driven proton accleration      electromagnetic pulses      laser      target  
Received:  06 August 2021      Revised:  21 October 2021      Accepted manuscript online:  06 November 2021
PACS:  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  41.75.Jv (Laser-driven acceleration?)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975037 and 11921006) and the National Grand Instrument Project of China (Grant Nos. 2019YFF01014400 and 2019YFF01014404).
Corresponding Authors:  Chen Lin, Ting-Shuai Li     E-mail:  lc0812@pku.edu.cn;litingshuai@uestc.edu.cn

Cite this article: 

Yi-Lin Xu(徐毅麟), Dong-Yu Li(李东彧), Ya-Dong Xia(夏亚东), Si-Yuan Zhang(张思源), Min-Jian Wu(吴旻剑), Tong Yang(杨童), Jun-Gao Zhu(朱军高), Hao Cheng(程浩), Chuan-Ke Wang(王传珂), Chen Lin(林晨), Ting-Shuai Li(李廷帅), and Xue-Qing Yan(颜学庆) Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA 2022 Chin. Phys. B 31 025205

[1] Consoli F, Tikhonchuk V T, Bardon M, Bradford P, Carroll D, Cikhardt J, Cipriani R, Clarke J, Cowan T, Danson C, Angelis R, Marco M, Dubois J, Etchessahar B, Garcia A, Hillier D, Honsa A, Jiang W, Kmetik V, Krasa J, Li Y, Lubrano F, McKenna P, Metzkes J, Poye A, Prencipe I, Raczka P, Smith R A, Vrana R, Woolsey N C, Zemaityte E, Zhang Y, Zielbauer B and Neely D 2020 High Power Laser Sci. 8 e22
[2] Hatchett S, Brown C G, Cowan T, Henry E, Johnson J, Key M, Koch A, Langdon A, Lasinski B, Lee R, Mackinnon, Pennington D, Perry M, Phillips T, Roth M, Sangster T, Singh M, Snavely R, Stoyer M, Wilks S and Yasuike K 2020 Phys. Plasmas 7 2076
[3] Brown C G, Ayers J, Felker B, Ferguson W, Holder J, Nagel S, Piston K, Simanovskaia N, Throop A L, Chung M and Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729
[4] Cikhardt J, Krasa J, Marco M D, Pfeifer M, Velyhan A, Krousky E, Cikhardtova B, Klir D, Rezac K, Ullschmied J, Skala J, Kubes P and Kravarik J 2014 Rev. Sci. Instrum. 85 103507
[5] Krása J, Marco M, J Cikhardt, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J and Dudžák R 2017 Plasma Phys. Contr. F. 59 065007
[6] Marco M D, Krása J, Cikhardt J, Velyhan A, Pfeifer M, Dudžák R, Dostál J, Krouský E, Limpouch J, Pisarczyk T, Kalinowska Z, Chodukowski T, Ullschmied J, Giuffrida L, Chatain D, Perin J and Margarone D 2017 Phys. Plasmas 24 083103
[7] Bisesto F, Anania M, Botton M, E Chiadroni, Cianchi A, Curcio A, Ferrario M, Galletti M, Henis Z, Pompili R, Schleifer E and Zigler A 2018 Nucl. Instrum. Meth. A. 909 398
[8] Bradford P, Woolsey N, Scott G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P, Montgomery E, Musgrave I, Oliveira P, Rusby D, Spindloe C, Summers B, Zemaityte E, Zhang, Li Y, McKenna P and Neely D 2018 High Power Laser Sci. 6 e21
[9] Varma S, Spicer J, Brawley B and Miragliotta J 2014 Opt. Eng. 53 051515
[10] Yang Y, Yi T, Yang M, Wang C and Li T 2019 Laser Phys. 29 016003
[11] Yang M, Li T, Wang C, Yang J, Yang W, Yi T, Liu S, Jiang S and Ding Y 2016 Chin. Opt. Lett. 14 101402
[12] Wang W, Cai H, Teng J, Chen J, He S, Shan L, Lu F, Wu Y, Zhang B, Hong W, Bi B, Zhang F, Liu D, Xue F, Li B, Liu H, He W, Jiao J, Dong K, Zhang F, He Y, Cui B, Xie N, Yuan Z, Tian C, Wang X, Zhou K, Deng Z, Zhang Z, Zhou W, Cao L, Zhang B, Zhu S, He X and Gu Y 2018 Phys. Plasmas 25 083111
[13] Consoli F, Angelis R, Robinson T, Giltrap S, Hicks G, Ditter E, Ettlinger O, Najmudin, Notley M and Smith R 2019 Sci. Rep. 9 8551
[14] Consoli F, Angelis R, Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D and Dudzak R 2018 Plasma Phys. Contr. F. 60 105006
[15] Kumar L, Manikanta E, Leela C and Kiran P 2014 Appl. Phys. Lett. 105 064102
[16] Torrisi L, Marco M, Krása J, Cikhardt J, Consoli F, Angelis R, Pfeifer M, Krůs M, Dostál J, Margarone D, Picciotto A, Velyhan A, Klír D, Dudžák R, Limpouch J, Korn G and Cutroneo M 2018 EPJ Web of Conferences 167 03009
[17] Minenna D, PoyéA, Bradford P, Woolsey N and Tikhonchuk V 2020 Phys. Plasmas 27 063102
[18] Dubois J, Lavaderci F, Raffestin D, Ribolzi J, Gazave J, Fontaine A, Humieres E, Hulin S, Nicolai P, Poye A and Tikhonchuk V 2014 Phys. Rev. E 89 013102
[19] Poye A, Dubois J, Lavaderci F, Humieres E, Bardon M, Hulin S, Grandvaux M, Ribolzi J, Raffestin D, Santos J, Nicolai P and Tikhonchuk V 2015 Phys. Rev. E 92 043107
[20] Bogatskaya A, Volkova E and Popov A 2019 Laser Phys. 29 086002
[21] Krása J, Consoli F, Cikhardt J, Pfeifer M, Angelis R, Krupka M, Klír D, Řezáč K, Dostál J, Krůs M and Dudžák R 2020 Plasma Phys. Contr. F. 62 025021
[22] Zhang G, Xia Y, Yi T, Wang Q, Wang C and Li T 2019 Fusion Eng. Des. 141 21
[23] Marco M, Pfeifer M, Krousky E, Krasa J, Cikhardt J, Klir D and Nassisi V 2014 J. Phys. Conf. Ser. 508 012007
[24] Marco M, Krása J, Cikhardt J, Pfeifer M, Krouský E, Margarone D, Ahmed H, Borghesi M, Kar S, Giuffrida L, Vrana R, Velyhan A, Limpouch J, Korn G, Weber S, Velardi L, Side D, Nassisi V and Ullschmied J 2016 J. Instrum. 11 C06004
[25] Liao Q, Wu M, Gong Z, Geng Y, Xu X, Li D, Shou Y, Zhu J, Li C, Yang M, Li T, Lu H, Ma W, Zhao Y, Lin C and Yan X 2018 Phys. Plasmas 25 063109
[26] Fernández J, Cobble J, Montgomery D, Wilke M and Afeyan B 2000 Phys. Plasmas 7 3743
[27] Zhu J, Wu M, Liao Q, Geng Y, Zhu K, Li C, Xu X, Li D, Shou Y, Yang T, Wang P, Wang D, Wang J, Chen C, He X, Zhao Y, Ma W, Lu H, Tajima T, Lin C and Yan X 2019 Phys. Rev. Accel. Beams 22 061302
[28] Xia Y, Li D, Zhang S, Wu M, Yang T, Geng Y, Zhu J, Xu X, Li C, Wang F, Lin C, Li T and Yan X 2020 Phys. Plasmas 27 032705
[29] He Q, Kang N, Ren L, Tian C, Wang C, Zhang Z, Liu D, Yang L, Liu H, Sun M, Zhu B, Zhou W and Li T 2021 Plasma Sci. Technol. 23 115202
[30] Wu M, Zhu J, Li D, Yang T, Liao Q, Geng Y, Xu X, Li C, Shou Y, Zhao Y, Lu Y, Lu H, Ma W, Lin C, Zhu K and Yan X 2020 Nucl. Instrum. Meth. A. 955 163249
[31] Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J and Throop A 2010 J. Phys. Conf. Ser. 244 032001
[32] Consoli F, Andreoli P L, Cipriani1M, Cristofari G, Angelis R, Giorgio G, Duvillaret L, Krása J, Neely D, Salvadori M, Scisció M, Smith R and Tikhonchuk V T 2020 Phil. Trans. R. Soc. A 379 20200022
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[6] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[7] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[8] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[9] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[10] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[11] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[14] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[15] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
No Suggested Reading articles found!