Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114102    DOI: 10.1088/1674-1056/23/11/114102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band

Guo Li-Xin (郭立新), Gou Xue-Yin (苟雪银), Zhang Lian-Bo (张连波)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  

In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method.

Keywords:  bidirectional reflectance distribution function      rough surface      genetic algorithm      microwave band  
Received:  17 January 2014      Revised:  25 April 2014      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  02.60.Pn (Numerical optimization)  
Fund: 

Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61225002), the Aeronautical Science Fund and Aviation Key Laboratory of Science and Technology on Avionics Integrated Sensor System Simulation, China (Grant No. 20132081015), and the Fundamental Research Funds for the Central Universities, China (Grant No. SPSZ031403).

Corresponding Authors:  Guo Li-Xin     E-mail:  lxguo@xidian.edu.cn

Cite this article: 

Guo Li-Xin (郭立新), Gou Xue-Yin (苟雪银), Zhang Lian-Bo (张连波) Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band 2014 Chin. Phys. B 23 114102

[1] Nicodemus F E 1970 Appl. Opt. 9 1474
[2] Nicodemus F E 1965 Appl. Opt. 4 767
[3] Wu Z S and Dou Y H 2003 Acta Opt. Sin. 23 1250 (in Chinese)
[4] Bousquet L, Lachérade S, Jacquemoud S and Moya I 2005 Remote Sensing Environment 98 201
[5] Robert L C and Kenneth E T 1982 ACM Trans. Graphics 1 7
[6] Ruck G, Barrick D E, Stuart W D and Kirchbaum C K 1970 Radar Cross Section Handbook 2 (New York) p. 695
[7] Luo W, Zhang M, Zhou P and Yin H C 2010 Chin. Phys. B 19 084102
[8] Ren X C and Guo L X 2008 Chin. Phys. B 17 2491
[9] Tomiyasu K 1988 IEEE Tran. Geosci. and Remote Sens. 26 660
[10] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050201
[11] Lawrence B W 1994 J. Opt. Soc. Am. A 11 2956
[12] Xiao D H, Kenneth E T and Fraveois X S 1991 Computer Graphics 25 175
[13] Wu Z S, Xie D H, Xie P H and Wei Q N 2002 Acta Opt. Sin. 22 897 (in Chinese)
[14] Zhang L and Zhang B 1997 J. Software 8 335 (in Chinese)
[15] Lei Y J, Zhang S W, Li X W and Zhou C M 2005 Genetic Algorithm Toolbox and Application (in Chinese) (Xi'an: Xidian University Press) p. 6
[16] Lu J, Wang J B and Sun G C 2009 Chin. Phys. B 18 1598
[17] Sun C M, Zhang W and Wang Z L 2008 Opt. Technol. 34 750 (in Chinese)
[18] Cao Y H, Wu Z S, Zhang H L, Wei Q N and Wang S M 2008 Acta Opt. Sin. 28 792 (in Chinese)
[19] Zhang H L, Wu Z S, Cao Y H and Zhang G 2010 Opt. Appl. 40 197
[20] Wu Z S, Han X E, Zhang X D, Jiang R X, Wei Q N and Xu Z 1996 Acta Opt. Sin. 16 262 (in Chinese)
[21] Wang A Q, Guo L X and Chai C 2011 Chin. Phys. B 20 050202
[22] Guo L X, Wang R and Wu Z S 2010 The Basic Theory and Method of Scattering from Randomly Rough Surface (in Chinese) (Beijing: Science Press) p. 3
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[7] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[8] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
[9] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[10] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[11] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[12] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[13] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[14] Degree of polarization based on the three-component pBRDF model for metallic materials
Kai Wang(王凯), Jing-Ping Zhu(朱京平), Hong Liu(刘宏). Chin. Phys. B, 2017, 26(2): 024210.
[15] Model of bidirectional reflectance distribution function for metallic materials
Kai Wang(王凯), Jing-Ping Zhu(朱京平), Hong Liu(刘宏), Xun Hou(侯洵). Chin. Phys. B, 2016, 25(9): 094201.
No Suggested Reading articles found!