|
|
Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms |
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We systematically investigate the polarization gradient cooling (PGC) process in an optical molasses of ultracold cesium atoms. The SR mode for changing the cooling laser, which means that the cooling laser frequency is stepped to the setting value while its intensity is ramped, is found to be the best for the PGC, compared with other modes studied. We verify that the heating effect of the cold atoms, which appears when the cooling laser intensity is lower than the saturation intensity, arises from insufficient polarization gradient cooling. Finally, an exponential decay function with a statistical explanation is introduced to explain the dependence of the cold atom temperature on the PGC interaction time.
|
Received: 12 March 2014
Revised: 11 May 2014
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921603 and 2010CB923103), the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490), the National Natural Science Foundation of China (Grant Nos. 11304189, 61378015, and 61275209), the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064), the Program for Changjiang Scholars, China, and the Innovative Research Team in University, China (Grant No. IRT13076). |
Corresponding Authors:
Zhao Yan-Ting
E-mail: zhaoyt@sxu.edu.cn
|
Cite this article:
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms 2014 Chin. Phys. B 23 113702
|
[1] |
Bize S, Laurent P, Abgrall M, Marion H, Maksimovic I, Cacciapuoti L, Grünert J, Vian C, Pereira dos Santos F, Rosenbusch P, Lemonde P, Santarelli G, Wolf P, Clairon A, Luiten, Tobar M and Salomon C 2005 J. Phys. B 38 S449
|
[2] |
Carnal O and Mlynek J 1991 Phys. Rev. Lett. 66 2689
|
[3] |
Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232
|
[4] |
Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
|
[5] |
Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
|
[6] |
Garci-Ripoll J J, Zoller P and Cirac J I 2005 J. Phys. B 38 567
|
[7] |
Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
|
[8] |
Kasevich M and Chu S 1992 Phys. Rev. Lett. 69 1741
|
[9] |
Aspect A, Arimondo E, Kaiser R, Vansteenkiste N and Cohen Tannoudji C 1988 Phys. Rev. Lett. 61 826
|
[10] |
Davis K B, Mewes M O, Joffe M A, Andrews M R and Ketterle W 1995 Phys. Rev. Lett. 74 5202
|
[11] |
Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
|
[12] |
Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 6 2072
|
[13] |
Ungar P J, Weiss D S, Riis E and Chu S 1989 J. Opt. Soc. Am. B 6 2058
|
[14] |
Fernandes D R, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett. 100 63001
|
[15] |
Kastberg A, Phillip W D, Rolston S L, Spreeuw R J C and Jessen P S 1995 Phys. Rev. Lett. 74 1542
|
[16] |
Stecher H, Ritsch H, Zoller P, Sander F, Esslinger T and Hänsch T W 1997 Phys. Rev. A 55 545
|
[17] |
Landini M, Roy S C, Trypogeorgos D, Fattori M, Inguscio M and Modugno G 2011 Phys. Rev. A 84 043432
|
[18] |
Salomon C, Dalibard J, Phillips W D, Clairon A and Guellati S 1990 Europhys. Lett. 12 683
|
[19] |
Wang B, Lü D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
|
[20] |
Hou J D, Li Y M, Yang D H and Wang Y Q 1998 Acta Phys. Sin. (Oversea Edition) 7 881
|
[21] |
Han S L, Cheng B, Zhang J F, Xu Y F, Wang Z Y and Lin Q 2009 Chin. Phys. Lett. 26 123702
|
[22] |
Ji Z H, Zhao Y T, Ma J, Xiao L T and Jia S T 2012 J. Phy. Soc. Jpn. 81 104301
|
[23] |
Pradhan S and Jagatap B N 2008 Rev. Sci. Instrum. 79 013101
|
[24] |
Shevy Y, Weiss D and Chu S 1989 Spin Polarized Quantum Systems (Singapore: World Scientific) pp. 287-294
|
[25] |
Castin Y and Dalibard J 1991 Europhys. Lett. 14 761
|
[26] |
Steck D A http://steck.us/alkalidata
|
[27] |
Drewsen M, Laurent P, Nadir A, Santareli G, Clairon A, Castin Y, Grison D and Salomon C 1994 Appl. Phys. B 59 283
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|