CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters:A density functional theory study |
Li Wei-Yin (李维银), Chen Fu-Yi (陈福义) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibrational properties of Ag13, Ag12Cu1, Cu13, and Cu12Ag1 clusters by using the (time-dependent) density functional theory. The results show that the most stable structures are cuboctahedron (COh) for Ag13 and icosahedron (Ih) for Cu13, Ag12Cu 1core, and Cu12Ag 1sur. In the visible-near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Ag12Cu 1core to Ag13 to Ag12Cu 1sur with the same motifs, 2) the shapes of pure Ag13 and Ag12Cu 1core clusters change from COh to Ih to decahedron (Dh), 3) the shape of Ag12Cu 1sur clusters changes from Ih to COh to Dh, and 4) the shapes of pure Cu13 and Cu12Ag1 clusters change from Ih to Dh to COh. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag13, Ag12Cu1 or Cu13, and Cu12Ag1 clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh.
|
Received: 16 April 2014
Revised: 26 May 2014
Accepted manuscript online:
|
PACS:
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
72.15.Nj
|
(Collective modes (e.g., in one-dimensional conductors))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing in China (Grant No. 30-TP-2009), the Aeronautic Science Foundation Program of China (Grant No. 2012ZF53073), and the Doctoral Fund of the Ministry of Education of China (Grant No. 20136102110013). |
Corresponding Authors:
Chen Fu-Yi
E-mail: fuyichen@nwpu.edu.cn
|
Cite this article:
Li Wei-Yin (李维银), Chen Fu-Yi (陈福义) Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters:A density functional theory study 2014 Chin. Phys. B 23 117103
|
[1] |
Zhu M, Aikens C M, Hollander F J, Schatz G C and Jin R 2008 J. Am. Chem. Soc. 130 5883
|
[2] |
Aikens C M 2008 J. Phys. Chem. C 112 19797
|
[3] |
Huang T and Murray R W 2001 J. Phys. Chem. B 105 12498
|
[4] |
Link S, Beeby A, FitzGerald S, El-Sayed M A, Schaaff T G and Whetten R L 2002 J. Phys. Chem. B 106 3410
|
[5] |
Ramakrishna G, Varnavski O, Kim J, Lee D and Goodson T 2008 J. Am. Chem. Soc. 130 5032
|
[6] |
Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C and Jin R C 2009 J. Am. Chem. Soc. 131 2490
|
[7] |
Chen Y S, Choi H and Kamat P V 2013 J. Am. Chem. Soc. 135 8822
|
[8] |
Sakai N, Nakamura S and Tatsuma T 2013 Dalton T. 42 16162
|
[9] |
Darbha G K, Ray A and Ray P C 2007 ACS Nano 1 208
|
[10] |
Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996 Nature 382 607
|
[11] |
Brongersma M L, Hartman J W and Atwater H A 2000 Phys. Rev. B 62 16356
|
[12] |
Quinten M, Leitner A, Krenn J R and Aussenegg F R 1998 Opt. Lett. 23 1331
|
[13] |
Lewis L N 1993 Chem. Rev. 93 2693
|
[14] |
Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
|
[15] |
Jellinek J 2008 Faraday Discuss 138 11
|
[16] |
Zhang J T, Li J and Sheng Y 2014 Chin. Phys. B 23 013103
|
[17] |
Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B and Cui T 2014 Chin. Phys. B 23 016102
|
[18] |
Zheng X H, Sui J H, Zhang X, Yang Z Y and Cai W 2014 Chin. Phys. B 23 018101
|
[19] |
Zhang S, Qin Y, Ma M F, Lu C and Li G Q 2014 Chin. Phys. B 23 013601
|
[20] |
Scholl J A, Koh A L and Dionne J A 2012 Nature 483 421
|
[21] |
Lee K S and El-Sayed M A 2006 J. Phys. Chem. B 110 19220
|
[22] |
Noguez C 2007 J. Phys. Chem. C 111 3806
|
[23] |
Dong J Z, Zhang X L, Cao Y A, Yang W S and Tian J G 2011 Mater. Lett. 65 2665
|
[24] |
Gong J X, Zhou F, Li Z Y and Tang Z Y 2012 Langmuir 28 8959
|
[25] |
Guidez E B, Makinen V, Hakkinen H and Aikens C M 2012 J. Phys. Chem. C 116 20617
|
[26] |
Baishya K, Idrobo J C, Ogut S, Yang M L, Jackson K and Jellinek J 2008 Phys. Rev. B 78 075439
|
[27] |
Durante N, Fortunelli A, Broyer M and Stener M 2011 J. Phys. Chem. C 115 6277
|
[28] |
Weissker H C and Mottet C 2011 Phys. Rev. B 84 165443
|
[29] |
Bae G T and Aikens C M 2012 J. Phys. Chem. C 116 10356
|
[30] |
Ma W Q and Chen F Y 2012 J. Alloy. Compd. 541 79
|
[31] |
Li W Y and Chen F Y 2013 J. Nanopart. Res. 15 1809
|
[32] |
Rao Y, Lei Y M, Cui X Y, Liu Z W and Chen F Y 2013 J. Alloy. Compd. 565 50
|
[33] |
Li W and Chen F 2014 Comp. Mater. Sci. 81 587
|
[34] |
Li W and Chen F 2014 Eur. Phys. J. D 68 91
|
[35] |
Li W and Chen F 2014 Phys. B 443 6
|
[36] |
Li W and Chen F 2014 J. Alloy. Compd. 607 238
|
[37] |
Li W and Chen F 2013 Appl. Phys. A Mater. 113 543
|
[38] |
Binns C 2001 Surf. Sci. Rep. 44 1
|
[39] |
Knickelbein M B 1999 Ann. Rev. Phys. Chem. 50 79
|
[40] |
Tsuji M, Tang X L, Matsunaga M, Maeda Y and Watanabe M 2010 Cryst. Growth Des. 10 5238
|
[41] |
Tsuji M, Ogino M, Matsuo R, Kumagae H, Hikino S, Kim T and Yoon S H 2010 Cryst. Growth Des. 10 296
|
[42] |
Zeng J, Zheng Y Q, Rycenga M, Tao J, Li Z Y, Zhang Q A, Zhu Y M and Xia Y N 2010 J. Am. Chem. Soc. 132 8552
|
[43] |
Chen F Y and Johnston R L 2007 Appl. Phys. Lett. 90 153123
|
[44] |
Harb M, Rabilloud F, Simon D, Rydlo A, Lecoultre S, Conus F, Rodrigues V and Felix C 2008 J. Chem. Phys. 129 194108
|
[45] |
Idrobo J C, Ogut S, Nemeth K, Jellinek J and Ferrando R 2007 Phys. Rev. B 75 233411
|
[46] |
Oviedo J and Palmer R E 2002 J. Chem. Phys. 117 9548
|
[47] |
Longo R C and Gallego L J 2006 Phys. Rev. B 74 193409
|
[48] |
Chang C M and Chou M Y 2004 Phys. Rev. Lett. 93 133401
|
[49] |
Yang M, Jackson K A and Jellinek J 2006 J. Chem. Phys. 125 144308
|
[50] |
Yang M L, Jackson K A, Koehler C, Frauenheim T and Jellinek J 2006 J. Chem. Phys. 124 024308
|
[51] |
Zeng Q, Wang X, Yang M L and Fu H B 2010 Eur. Phys. J. D 58 125
|
[52] |
Baishya K, Idrobo J C, Ogut S, Yang M L, Jackson K A and Jellinek J 2011 Phys. Rev. B 83 245402
|
[53] |
Delley B 1990 J. Chem. Phys. 92 508
|
[54] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[55] |
Delley B 2002 Phys. Rev. B 66 155125
|
[56] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[57] |
Chen F and Johnston R L 2008 Acta Mater. 56 2374
|
[58] |
Delley B 2010 J. Phys.: Condens. Matter 22 384208
|
[59] |
Bechthold P S, Kettler U and Krasser W 1985 Surf. Sci. 156 875
|
[60] |
Fedrigo S, Harbich W and Buttet J 1993 Phys. Rev. B 47 10706
|
[61] |
Idrobo J C, Ogut S and Jellinek J 2005 Phys. Rev. B 72 085445
|
[62] |
Ogut S, Idrobo J C, Jellinek J and Wang J L 2006 J. Clust. Sci. 17 609
|
[63] |
Tiago M L, Idrobo J C, Ogut S, Jellinek J and Chelikowsky J R 2009 Phys. Rev. B 79 155419
|
[64] |
Yabana K and Bertsch G F 1999 Phys. Rev. A 60 3809
|
[65] |
Yan J and Gao S W 2008 Phys. Rev. B 78 235413
|
[66] |
Shin K, Kim D H, Yeo S C and Lee H M 2012 Catal. Today 185 94
|
[67] |
Chang C M and Chou M Y 2004 Phys. Rev. Lett. 93 133401
|
[68] |
Longo R C and Gallego L J 2006 Phys. Rev. B 74 193409
|
[69] |
Michaelian K, Rendon N and Garzon I L 1999 Phys. Rev. B 60 2000
|
[70] |
Oviedo J and Palmer R E 2002 J. Chem. Phys. 117 9548
|
[71] |
Pereiro M, Baldomir D and Arias J E 2007 Phys. Rev. A 75 063204
|
[72] |
Yang M, Jackson K A and Jellinek J 2006 J. Chem. Phys. 125 144308
|
[73] |
Yang M L, Jackson K A, Koehler C, Frauenheim T and Jellinek J 2006 J. Chem. Phys. 124 024308
|
[74] |
Yang X L, Cai W S and Shao X G 2007 J. Phys. Chem. A 111 5048
|
[75] |
Baishya K, Idrobo J C, Ogut S, Yang M L, Jackson K A and Jellinek J 2011 Phys. Rev. B 83 245402
|
[76] |
Darby S, Mortimer-Jones T V, Johnston R L and Roberts C 2002 J. Chem. Phys. 116 1536
|
[77] |
Zeng Q, Wang X, Yang M L and Fu H B 2010 Eur. Phys. J. D 58 125
|
[78] |
Bochicchio D and Ferrando R 2010 Nano Lett. 10 4211
|
[79] |
Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
|
[80] |
Mottet C, Rossi G, Baletto F and Ferrando R 2005 Phys. Rev. Lett. 95 035501
|
[81] |
Bochicchio D and Ferrando R 2013 Phys. Rev. B 87 165435
|
[82] |
Idrobo J C and Pantelides S T 2010 Phys. Rev. B 82 085420
|
[83] |
Ozin G A and Mcintosh D F 1986 J. Phys. Chem. 90 5756
|
[84] |
Yang F and Liu L 1995 J. China Univ. Sci. Tech. 25 512
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|