Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117102    DOI: 10.1088/1674-1056/23/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni

Li Chun-Xia (李春霞)a b c, Dang Sui-Hu (党随虎)a b c, Wang Li-Ping (王丽萍)a b, Zhang Cai-Li (张彩丽)a b, Han Pei-De (韩培德)a b
a Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China;
b College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
c College of Physics and Electronic Engineering, Yangtze Normal University, Chongqing 408003, China
Abstract  

We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the <112> (111) and <101> (111) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the <101> direction while facilitating plastic deformation by slipping along the <112> direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.

Keywords:  first principles      generalized stacking fault energy      Nickel based alloys      strength and ductility  
Received:  31 March 2014      Revised:  21 May 2014      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Be (Transition metals and alloys)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No 51371123), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2013140211003), the Natural Science Foundation of Shanxi Science Technological Commission, China (Grant No. 2014011002), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ131315).

Corresponding Authors:  Han Pei-De     E-mail:  hanpeide@126.com,hanpeide@tyut.edu.cn

Cite this article: 

Li Chun-Xia (李春霞), Dang Sui-Hu (党随虎), Wang Li-Ping (王丽萍), Zhang Cai-Li (张彩丽), Han Pei-De (韩培德) First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni 2014 Chin. Phys. B 23 117102

[1] Pollock T and Argon A 1994 Acta Metallurgica et Materialia 42 1859
[2] Datta A, Waghmare U V and Ramamurty U 2009 Scripta Mater. 60 124
[3] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[4] Yu X X and Wang C Y 2009 Acta Mater. 57 5914
[5] Zhao Y, Zhu Y, Liao X, Horita Z and Langdon T 2006 Appl. Phys. Lett. 89 121906
[6] Cong W and Chong Yu W 2009 Chin. Phys. B 18 3928
[7] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H and Du Y W 2010 Chin. Phys. B 19 117503
[8] Holt R and Wallace W 1976 Int. Met. Rev. 21 1
[9] Wei Y and Anand L 2004 J. Mech. Phys. Solids 52 2587
[10] Kobayashi S, Tsurekawa S, Watanabe T and Palumbo G 2010 Scripta Mater. 62 294
[11] Gianola D, van Petegem S, Legros M, Brandstetter S, van Swygenhoven H and Hemker K 2006 Acta Mater. 54 2253
[12] Richter V and Ruthendorf M 1999 Int. J. Refract. Met. Hard Mater. 17 141
[13] Vitek V 1968 Philos. Mag. 18 773
[14] Vitek V 1974 Cryst. Lattice Defects 5 1
[15] Tadmor E and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[16] Rice J R 1992 J. Mech. Phys. Solids 40 239
[17] Rice J R and Beltz G E 1994 J. Mech. Phys. Solids 42 333
[18] Wu X Z, Wang R, Wang S F and Wei Q Y 2010 Appl. Surf. Sci. 256 6345
[19] Brandl C, Derlet P and van Swygenhoven H 2007 Phys. Rev. B 76 054124
[20] Branicio P, Zhang J and Srolovitz D 2013 Phys. Rev. B 88 064104
[21] Muzyk M, Pakiela Z and Kurzydlowski K 2011 Scripta Mater. 64 916
[22] Chandran M and Sondhi S 2011 J. Appl. Phys. 109 103525
[23] Liao M, Li B and Horstemeyer M F 2013 Scripta Mater. 69 246
[24] Wu X, Wang R and Wang S 2010 Appl. Surf. Sci. 256 3409
[25] Klamecki B E 1982 Wear 77 115
[26] Kohlhaas R, Dunner P and Schmitz P Z 1967 Z Angew Physik 23
[27] Kibey S, Liu J, Curtis M, Johnson D and Sehitoglu H 2006 Acta Mater. 54 2991
[28] Kwasniak P, Muzyk M, Garbacz H and Kurzydlowski K J 2013 Mater. Lett. 94 92
[29] Foiles S, Baskes M and Daw M 1986 Phys. Rev. B 33 7983
[30] Schusteritsch G and Kaxiras E 2012 Modell. Simul. Mater. Sci. Eng. 20 065007
[31] Acet M, Zähres H, Wassermann E and Pepperhoff W 1994 Phys. Rev. B 49 6012
[32] Nie X, Wang R, Ye Y, Zhou Y and Wang D 1995 Solid State Commun. 96 729
[33] Bernstein N and Tadmor E 2004 Phys. Rev. B 69 094116
[34] van Swygenhoven H, Derlet P and Froseth A 2004 Nat. Mater. 3 399
[35] Frøseth A, Derlet P and van Swygenhoven H 2004 Acta Mater. 52 5863
[36] Li B, Cao B Y, Ramesh K T and Ma E 2009 Acta Mater. 57 4500
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[13] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
[14] First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC
Qiang Li(李强), Zhen-Ling Wang(王振玲), Yu-Cheng Yu(于玉城), Lan Ma(马兰), Shao-Li Yang(杨绍利), Hai-Bo Wang(王海波), Rui Zhang(张锐). Chin. Phys. B, 2019, 28(1): 013101.
[15] Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(7): 077103.
No Suggested Reading articles found!