Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 103101    DOI: 10.1088/1674-1056/23/10/103101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

Wang Ke-Dong (王克栋), Wang Mei-Ting (王美婷), Meng Ju (孟举)
College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.
Keywords:  conformation      hydrogen bond      hyperconjugative interaction      ionization energy  
Received:  10 December 2013      Revised:  18 April 2014      Accepted manuscript online: 
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  33.15.Ry (Ionization potentials, electron affinities, molecular core binding energy)  
  31.15.xw (Valence bond calculations)  
Fund: Project supported by the Science Foundation of Henan Provincial Educational Committee, China (Grant Nos. 2011A140015 and 12A140006) and the Doctoral Research Fund of Henan Normal University, China (Grant No. 525449).
Corresponding Authors:  Wang Ke-Dong     E-mail:  wangkd@htu.cn
About author:  31.15.ae; 33.15.Ry; 31.15.xw

Cite this article: 

Wang Ke-Dong (王克栋), Wang Mei-Ting (王美婷), Meng Ju (孟举) Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies 2014 Chin. Phys. B 23 103101

[1]McCormick D A 1989 Neurophysiol. 62 1018
[2]Dobson A J and Gerkin R E 1996 Acta Cryst. C52 3075
[3]Crittenden D L, Chebib M and Jordan M J T 2004 Phys. Chem. A 108 203
[4]Blanco S, López J C, Mata S and Alonso J L 2010 Angew. Chem. Int. Ed. 49 9187
[5]Song K and Kang Y K 2012 J. Mol. Struct. (THEOCHEM) 1024 163
[6]Perczel A, Angyan, J G, Kajtar, M, Viviani W, Rivail J, Marcoccia J and Csizmadia I G 1991 Am. Chem. Soc. 113 6256
[7]Perczel A, Hudáky P and Csizmadia I G 2000 J. Mol. Struct. (THEOCHEM) 500 59
[8]Frisch M J, Trucks G W H B Schlegel et al. 2009 Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009
[9]Purvis G D and Bartlett R J 1982 Chem. Phys. 76 1910
[10]Scheiner S 1997 Hydrogen Bonding: A Theoretical Perspective (New York: Oxford University Press)
[11]Bene J E D, Person W B and Szczepaniak K 1995 Phys. Chem. 99 10705
[12]Tian S X and Yang J 2006 Angew. Chem. Int. Ed. 45 2069
[13]Dolgounitcheva O, Zakrzewski V G and Oritiz J V 2000 J. Am. Chem. Soc. 122 12304
[14]Zakrzewski V G, Dolgounitcheva O and Oritiz J V 1997 Chem. Phys. 107 7906
[15]AIM 2000: A program to analyze and visualize atoms in molecules;
[16]Reed A, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899
[17]Tian S X 2004 J. Phys. Chem. B 108 20388
[18]Alabugin I V and Zeidan T A 2002 J. Am. Chem. Soc. 124 3175
[19]Ouyang S L, Wu N N, Sun C L, Liu J Y, Li Z W and Gao S Q 2010 Chin. Phys. B 19 093103
[20]Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747
[21]Cannington P H and Ham Norman S J 1983 Electron. Spectrosc. Relat. Phenom. 32 139
[22]Wang K D, Shan X and Chen X J 2009 J. Mol. Struct. (THEOCHEM) 909 91
[23]Wang K D, Ma P F and Shan X 2011 Chin. Phys. B 20 033102
[24]Wang K D, Guan J, Zhu C C and Liu Y F 2011 Acta Phys. Sin. 60 073102 (in Chinese)
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[5] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[6] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[7] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[8] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[9] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[10] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[11] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[12] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[13] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[14] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[15] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
No Suggested Reading articles found!