Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104222    DOI: 10.1088/1674-1056/23/10/104222
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser frequency stabilization and shifting by usingmodulation transfer spectroscopy

Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Wu Bin (吴彬), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Xu Yun-Fei (徐云飞), Lin Qiang (林强)
Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F=2→F'=3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro–optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump-and probe-beams are used. By optimizing the temperature of the vapor, the pump-and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
Keywords:  laser stabilization      spectroscopy      diode lasers      line shapes and shifts  
Received:  12 December 2013      Revised:  23 March 2014      Accepted manuscript online: 
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174249), the National Key Basic Research Program, China (Grant No. 2013CB329501), the National High-Technology Research and Development Program of China (Grant No. 2011AA060504), and the Fundamental Research Funds for the Central Universities (Grant No. 2014FZA3002).
Corresponding Authors:  Wang Zhao-Ying,Lin Qiang     E-mail:  zhaoyingwang@zju.edu.cn;qlin@zju.edu.cn
About author:  42.60.Lh; 33.57.+c

Cite this article: 

Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Wu Bin (吴彬), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Xu Yun-Fei (徐云飞), Lin Qiang (林强) Laser frequency stabilization and shifting by usingmodulation transfer spectroscopy 2014 Chin. Phys. B 23 104222

[1]Akulshin A M, Sautenkov V A, Velichansky V L, Zibrov A S and Zverkov M V 1990 Opt. Commun. 77 295
[2]Corwin K L, Lu Z T, Hand C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
[3]McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[4]Millett-Sikking A, Hughes I G, Tierney P and Cornish S L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 187
[5]Do H D, Moon G and Noh H-R 2008 Phys. Rev. A 77 032513
[6]Lancaster G P T, Conroy R S, Clifford M A, Arlt J and Dholakia K 1999 Opt. Commun. 170 79
[7]Noh H R 2012 Opt. Express 20 21784
[8]Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A and Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141
[9]Wieman C and Hänsch T W 1976 Phys. Rev. Lett. 36 1170
[10]Bjorklund G C 1980 Opt. Lett. 5 15
[11]Bjorklund G C, Levenson M D, Lenth W and Ortiz C 1983 Appl. Phys. B 32 145
[12]Ma L S, Ye J, Dubé P and Hall J L 1999 J. Opt. Soc. Am. B 16 2255
[13]Bertinetto F, Cordiale P, Galzerano G and Bava E 2001 IEEE Trans. Instrum. Meas. 50 490
[14]Eble J F and Schmidt-Kaler F 2007 Appl. Phys. B 88 563
[15]Hori T, Araya A, Moriwaki S and Mio N 2009 Appl. Opt. 48 429
[16]Inbar E, Mahal V and Arie A 1996 J. Opt. Soc. Am. B 13 1598
[17]Jaatinen E 1995 Opt. Commun. 120 91
[18]Mudarikwa L, Pahwa K and Goldwin J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065002
[19]Noh H R, Park S E, Li L Z, Park J D and Cho C H 2011 Opt. Express 19 23444
[20]Shirley J H 1982 Opt. Lett. 7 537
[21]Zhang J, Wei D, Xie C and Peng K 2003 Opt. Express 11 1338
[22]Zhang Z, Wang X and Lin Q 2009 Opt. Express 17 10372
[23]McCarron D J, Hughes I G, Tierney P and Cornish S L 2007 Rev. Sci. Instrum. 78 093106
[24]Liu T, Yan S, Li L, Lei H, Zhang T and Wang J 2003 Acta Photon. Sin. 32 5
[25]Zhou Z C, Wei R, Shi C Y and Wang Y Z 2010 Chin. Phys. Lett. 27 124211
[26]Wang W L, Ye J, Jiang H L, Bi Z Y, Ma L S and Xu X Y 2011 Chin. Phys. B 20 013201
[27]Qi X H, Chen W L, Yi L, Zhou D W, Zhou T, Xiao Q, Duan J, Zhou X J and Chen X Z 2009 Chin. Phys. Lett. 26 044205
[28]Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[29]Wei R, Deng J L, Qian Y, Zhang Y and Wang Y Z 2003 Chin. Phys. Lett. 20 1714
[30]Han S L, Cheng B, Zhang J F, Xu Y F, Wang Z Y and Lin Q 2009 Chin. Phys. Lett. 26 123702
[31]Han S L, Cheng B, Zhang J F, Xu Y F, Wang Z Y and Lin Q 2009 Chin. Phys. Lett. 26 063201
[32]Steane A M and Foot C J 1991 Europhys. Lett. 14 231
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] LAMOST medium-resolution spectroscopic survey of binarity and exotic star (LAMOST-MRS-B): Observation strategy and target selection
Jiao Li(李蛟), Jiang-Dan Li(李江丹), Yan-Jun Guo(郭彦君), Zhan-Wen Han(韩占文), Xue-Fei Chen(陈雪飞), Chao Liu(刘超), Hong-Wei Ge(葛宏伟), Deng-Kai Jiang(姜登凯), Li-Fang Li(李立芳), Bo Zhang(章博), Jia-Ming Liu(刘佳明), Hao Tian(田浩), Hao-Tong Zhang(张昊彤), Hai-Long Yuan(袁海龙), Wen-Yuan Cui(崔文元),Juan-Juan Ren(任娟娟), Jing-Hao Cai(蔡靖豪), and Jian-Rong Shi(施建荣). Chin. Phys. B, 2023, 32(1): 019501.
[4] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!