Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090301    DOI: 10.1088/1674-1056/23/9/090301
GENERAL Prev   Next  

Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential

L. B. Castroa b, A. S. de Castroc
a Departamento de Física, CFM Universidade Federal de Santa Catarina, 88040-900, CP. 476, Florianópolis-SC, Brazil;
b Departamento de Física, Universidade Federal do Maranhão Campus Universtitário do Bacanga, 6580-805, São Luís, MA, Brazil;
c Departamento de Física e Química, Campus de Guaratinguetá Universidade Estadual Paulista, 12516-410, Guaratinguetá-SP, Brazil
Abstract  The concepts of spin and pseudospin symmetries has been used as mere rhetorics to decorate the pseudoscalar potential [Chin. Phys. B 22 090301 (2013)]. It is also pointed out that a more complete analysis of the bound states of fermions in a pseudoscalar Cornell potential has already been published elsewhere.
Keywords:  Dirac equation      pseudoscalar Cornell potential      spin symmetry      pseudospin symmetry  
Received:  16 January 2014      Revised:  21 March 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  02.30.Gp (Special functions)  
Corresponding Authors:  L. B. Castro     E-mail:  luis.castro@pgfsc.ufsc.br

Cite this article: 

L. B. Castro, A. S. de Castro Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential 2014 Chin. Phys. B 23 090301

[1] de Castro A S 2004 Ann. Phys. 311 170
[2] Castro L B and de Castro A S 2013 Ann. Phys. 338 278
[3] Hamzavi M and Rajabi A A 2013 Chin. Phys. B 22 090301
[4] Bell J S and Ruegg H 1975 Nucl. Phys. B 98 151
[5] Ginocchio J N 2005 Phys. Rep. 414 165
[6] Alberto P, de Castro A S and Malheiro M 2007 Phys. Rev. C 75 047303
[7] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Int. J. Mod. Phys. D 13 1447
[8] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[9] Gumbs G and Kiang D 1986 Am. J. Phys. 54 462
[10] Domínguez-Adame F 1990 Am. J. Phys. 58 886
[11] de Castro A S 2002 Phys. Lett. A 305 100
[12] Nogami Y, Toyama F M and van Dijk W 2003 Am. J. Phys. 71 950
[13] Gou Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[14] de Castro A S, Alberto P, Lisboa R and Malheiro M 2006 Phys. Rev. C 73 054309
[15] Jia C S, Guo P and Peng X L 2006 J. Phys. A 39 7737
[16] de Castro A S 2007 Int. J. Mod. Phys. A 22 2609
[17] Castro L B, de Castro A S and Hott M 2007 Int. J. Mod. Phys. E 16 3002
[18] Jia C S, Guo P, Diao Y F, Yi L Z and Xie X J 2007 Eur. Phys. J. A 34 41
[19] Castro L B, de Castro A S and Hott M B 2007 EPL 77 20009
[20] Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A 40 1677
[21] Bayrak O and Boztosun I 2007 J. Phys. A 40 11119
[22] Soylu A, Bayrak O and Boztosun I 2007 J. Math. Phys. 48 082302
[23] Soylu A, Bayrak O and Boztosun I 2008 J. Phys. A 41 065308
[24] Zhang L H, Li X P and Jia C S 2008 Phys. Lett. A 372 2201
[25] Zhang F L, Fu B and Chen J L 2008 Phys. Rev. A 78 040101
[26] Akcay H 2009 Phys. Lett. A 373 616
[27] Arda A, Sever R and Tezcan C 2009 Ann. Phys. 18 736
[28] Ikhdair S M 2010 J. Math. Phys. 51 023525
[29] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[30] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 2522
[31] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311
[32] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Phys. Lett. A 374 4303
[33] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Few-Body Syst. 48 171
[34] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[35] Ikhdair S M and Server R 2010 Appl. Math. Comput. 216 911
[36] Aydogdu O and Sever R 2011 Phys. Lett. B 703 379
[37] Candemir N 2012 Int. J. Mod. Phys. E 21 1250060
[38] Zhang M C and Huang F G Q 2012 Ann. Phys. 327 841
[39] Castro L B 2012 Phys. Rev. C 86 052201
[40] Hamzavi M and Ikhdair S M 2012 Can. J. Phys. 90 655
[41] Agboola D 2012 J. Math. Phys. 53 052302
[42] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101
[43] Ikhdair S M and Hamzavi M 2012 Few-Body Syst. 53 487
[44] Guo J Y 2012 Phys. Rev. C 85 021302
[45] Chen S W 2012 Phys. Rev. C 85 054312
[46] Hamzavi M, Ikhdair S M and Ita B I 2012 Phys. Scr. 85 045009
[47] Ikhdair S M and Server R 2012 Appl. Math. Comput. 218 10082
[48] Akcay H and Server R 2013 Few-Body Syst. 54 1839
[49] Thylwe K E and Hamzavi M 2013 Phys. Scr. 87 025004
[50] Ikhdair S M amd Falaye B J 2013 Phys. Scr. 87 035002
[51] Liang H, Shen S, Zhao P and Meng J 2013 Phys. Rev. C 87 014334
[52] Hamzavi M and Rajabi A A 2013 Eur. Phys. J. Plus 128 20
[53] Hamzavi M and Rajabi A A 2013 Ann. Phys. 334 316
[54] Castilho W M and de Castro A S 2014 Ann. Phys. 340 1
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[5] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[9] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[10] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[11] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[12] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[13] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[14] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[15] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
No Suggested Reading articles found!