Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090204    DOI: 10.1088/1674-1056/23/9/090204
GENERAL Prev   Next  

Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model

Zhou Xian-Chun (周先春)a b c, Shi Lan-Fang (石兰芳)d, Han Xiang-Lin (韩祥临)e, Mo Jia-Qi (莫嘉琪)f
a College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
b Jiangsu Technology and Engineering Center for Meteorological Sensor Network, Nanjing University of Information Science and Technology, Nanjing 210044, China;
c Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China;
d College of Mathematics and Statistics, Nanjing University of information Science and Technology, Nanjing 210044, China;
e Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China;
f Department of Mathematics, Anhui Normal University, Wuhu 241003, China
Abstract  Using the trial equation method, a Broer-Kau-Kupershmidt (BKK) mechanism physical model is obtained, and the exact and approximate solitary traveling wave solutions are found. As an example, it is pointed out that the solitary traveling wave approximate solutions have better accurate degree by using the homotopic mapping theory.
Keywords:  nonlinear      solitary      traveling wave  
Received:  14 January 2014      Revised:  16 April 2014      Accepted manuscript online: 
PACS:  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 141275062 and 1202106), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123228120005), the Jiangsu Sensor Network and Modern Meteorological Equipment Preponderant Discipline Platform, China, the Natural Science Foundation from the Universities of Jiangsu Province, China (Grant No. 13KJB170016), the Advance Research Foundation in Nanjing University of Information Science and Technology of China (Grant No. 20110385), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A010005).
Corresponding Authors:  Zhou Xian-Chun, Mo Jia-Qi     E-mail:  zhouxc2008@163.com;mojiaqi@mail.ahnu.edu.cn

Cite this article: 

Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Han Xiang-Lin (韩祥临), Mo Jia-Qi (莫嘉琪) Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model 2014 Chin. Phys. B 23 090204

[1] Wang D S and Zhang H Q 2005 Chaos Soliton. Fract. 25 601
[2] Fan E G and Zhang H Q 1998 Phys. Lett. A 246 403
[3] Wang D S, Hu S H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[4] Yan D, Chang J J, Hamner C, Hoefer M, Kevrekidis P G, Engels P, Achilleos V, Frantzeskakis D J and Cuevas J 2012 J. Phys. B 45 115301
[5] Wang D S, Zeng X and Ma Y Q 2012 Phys. Lett. A 376 3067
[6] Lü D Z 2005 Acta Phys. Sin. 54 4501 (in Chinese)
[7] Wu J P 2011 Chin. Phys. Lett. 28 060207
[8] Liang L W, Li X D and Li Y X 2009 Acta Phys. Sin. 58 2159 (in Chinese)
[9] Chen H T and Zhang H Q 2004 Chaos Soliton. Fract. 20 765
[10] Lü D Z, Cui Y Y, Liu C H and Zhang Y 2010 Acta Phys. Sin. 59 6793 (in Chinese)
[11] Zuo J M and Zhang Y M 2011 Chin. Phys. B 20 010205
[12] Pang J, Jin L H and Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese)
[13] Clarkson P A and Kruskal M D 1989 Math. Phys. 30 2201
[14] Xin X P, Liu X Q and Zhang L L 2011 Chin. Phys. Lett. 28 1
[15] Trikia H and Wazwazb A 2009 Appl. Math. Comput. 214 370
[16] Wang T T and Yu J Q 2011 Jounal of Liaocheng University 24 1 (in Chinese)
[17] Li N and Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese)
[18] de Jager E M and Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co.)
[19] Barbu L and Morosanu G 2007 Singularly Perturbed Boundary-Value Problem (Basel: Birkhauserm Verlag AG)
[20] Zhou X C, Lin W T, Lin Y H and Mo J Q 2012 Acta Phys. Sin. 61 240202 (in Chinese)
[21] Zhou X C, Lin W T, Lin Y H, Yao J S and Mo J Q 2012 Acta Phys. Sin. 61 110207 (in Chinese)
[22] Shi L F, Zhou X C and Mo J Q 2011 Acta Phys. Sin. 60 110205 (in Chinese)
[23] Shi L F and Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese)
[24] Shi L F, Lin W T, Lin Y H and Mo J Q 2013 Acta Phys. Sin. 62 010201 (in Chinese)
[25] Han X L, Zhao Z J, Cheng R J and Mo J Q 2013 Acta Phys. Sin. 62 040203 (in Chinese)
[26] Mo J Q, Lin W T and Lin Y H 2011 Chin. Phys. B 20 070205
[27] Mo J Q 2011 Acta Phys. Sin. 60 090203 (in Chinese)
[28] Mo J Q, Cheng R J and Ge H X 2011 Acta Phys. Sin. 60 050204 (in Chinese)
[29] Mo J Q 2011 Acta Phys. Sin. 60 030203 (in Chinese)
[30] Mo J Q 2011 Commun. Theor. Phys. 55 387
[31] Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co.)
[32] He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[10] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[13] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
No Suggested Reading articles found!