Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090302    DOI: 10.1088/1674-1056/23/9/090302
GENERAL Prev   Next  

New 3-mode bosonic operator realization of SU(2) Lie algebra:From the point of view of squeezing

Da Cheng (笪诚), Chen Qian-Fan (陈千帆), Fan Hong-Yi (范洪义)
Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  We consider the quantum mechanical SU(2) transformation e2λ JzJ±e-2λ Jz=e±2λJ± as if the meaning of squeezing with e±2λ being squeezing parameter. By studying SU(2) operators (J±,Jz) from the point of view of squeezing we find that (J±,Jz) can also be realized in terms of 3-mode bosonic operators. Employing this realization, we find the natural representation (the eigenvectors of J+ or J-) of the 3-mode squeezing operator e2λ Jz. The idea of considering quantum SU(2) transformation as if squeezing is liable for us to obtain the new bosonic operator realization of SU(2) and new squeezing operators.
Keywords:  quantum mechanical SU(2) transformation      3-mode squeezing operator      new 3-mode bosonic operator realization of SU(2) Lie algebra  
Received:  05 February 2014      Revised:  31 March 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11275123) and the Key Project of Natural Science Fund of Anhui Province, China (Grant No. KJ2013A261).
Corresponding Authors:  Da Cheng     E-mail:  dacheng@ustc.edu

Cite this article: 

Da Cheng (笪诚), Chen Qian-Fan (陈千帆), Fan Hong-Yi (范洪义) New 3-mode bosonic operator realization of SU(2) Lie algebra:From the point of view of squeezing 2014 Chin. Phys. B 23 090302

[1] Biedenharn L C and Dam H V 1965 Quantum Theory of Angular Momentum (New York: Academic Press) p. 229
[2] Fan H Y and Fan Y 2002 Commun. Theor. Phys. 38 403
[3] Mikheyev S P and VanderLinde J 1989 Phys. Rev. A 39 1552
[4] Fan H Y and Da C 2013 Chin. Phys. B 22 090303
[5] Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics: Progress of Dirac's Symbolic Method (2nd edn.) (Hefei: USTC Press) (in Chinese)
[6] Schrödinger E 1941 Proc. Roy. Irish Acad. A46 183
[7] Fan H Y 2009 Mod. Phys. Lett. A 24 615
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[12] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!