Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098104    DOI: 10.1088/1674-1056/23/9/098104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication and characterization of direct-written 3D TiO2 woodpile electromagnetic bandgap structures

Li Ji-Jiao (李吉皎)a, Li Bo (李勃)a, Peng Qin-Mei (彭琴梅)a, Zhou Ji (周济)b, Li Long-Tu (李龙土)b
a Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;
b State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  Three groups of three-dimensional (3D) TiO2 woodpile electromagnetic gap materials with tailed rheological properties were developed for direct-written fabrication. Appropriate amount of polyethyleneimine (PEI) dispersants allow the preparation of TiO2 inks with a high solid content of 42 vol.%, which enables them to flow through the nozzles easily. The inks exhibit pseudoplastic behavior. The measured microwave characteristics of the results agree well with simulations based on plane wave expansion (PWE).
Keywords:  TiO2      woodpile structure      direct writing  
Received:  18 March 2014      Revised:  04 May 2014      Accepted manuscript online: 
PACS:  81.16.Dn (Self-assembly)  
  83.60.Fg (Shear rate dependent viscosity)  
  83.80.Hj (Suspensions, dispersions, pastes, slurries, colloids)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Corresponding Authors:  Li Bo     E-mail:  boli@mail.tsinghua.edu.cn

Cite this article: 

Li Ji-Jiao (李吉皎), Li Bo (李勃), Peng Qin-Mei (彭琴梅), Zhou Ji (周济), Li Long-Tu (李龙土) Fabrication and characterization of direct-written 3D TiO2 woodpile electromagnetic bandgap structures 2014 Chin. Phys. B 23 098104

[1] Therriault D, White S R and Lewis J A 2003 Nat. Mater. 2 265
[2] Gratson G M, Xu M J and Lewis J A 2004 Nature 428 386
[3] Chang C E, Tran V H, Wang J B, Fuh Y K and Lin L W 2010 Nano. Lett. 10 726
[4] Lin Y K, Rivera D and Chen K P 2006 Opt. Express 14 887
[5] Lin Y K and Herman P R 2005 J. Appl. Phys. 98 096102
[6] Lin Y, Herman P R and Darmawikarta K 2005 Appl. Phys. Lett. 86 071117
[7] Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q and Kong C 2012 Chin. Phys. B 21 118401
[8] Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102
[9] Zhang S Q 2012 Chin. Phys. B 21 065101
[10] Fan C Z, Wang J Q, He J N, Ding P and Liang E J 2013 Chin. Phys. B 22 074211
[11] Miranda P, Saiz E, Gryn K and Tomsia A P 2006 Acta Biomater. 2 457
[12] Nadkarni S S and Smay J E 2006 J. Am. Ceram. Soc. 89 96
[13] Dietrich A and Neubrand A 2001 J. Am. Ceram. Soc. 84 806
[14] Alemdar A, Öztekin N, Güngör N, Ece Ö I and Erim F B 2005 Colloids. Surf. A Physicochem. Eng. Asp. 252 95
[15] García-Santamaría F, Xu M, Lousse V, Fan S, Braun P V and Lewis J A 2007 Adv. Mater. 19 1567
[16] Smay J E, Gratson G M, Shepherd R F, Cesarano J and Lewis J A 2002 Adv. Mater. 14 1279
[17] Sözüer H and Dowling J P 1994 J. Mod. Opt. 41 231
[18] García-Santamaría F, Xu M, Lousse V, Fan S, Braun P V and Lewis J A 2007 Adv. Mater. 19 1567
[19] Maldovan M, Thomas E L and Carter C W 2004 Appl. Phys. Lett. 84 362
[20] Zhu C and Smay J E 2012 J. Mater. Process. Technol. 212 727
[21] Xie B J, Parkhill R L, Warren W L and Smay J E 2006 Adv. Funct. Mater. 16 1685
[22] Lewis J A, Smay J E, Stuecker J and Cesarano J 2006 J. Am. Ceram. Soc. 89 3599
[23] Gratson G M, García-Santamaría F, Lousse V, Xu M, Fan S, Lewis J A and Braun P V 2006 Adv. Mater. 18 461
[24] Cesarano J, Aksay I A and Bleier A 1988 J. Am. Ceram. Soc. 71 250
[25] Huang X and Garcia M H 1998 J. Fluid Mech. 374 305
[26] Ho K, Chan C and Soukoulis C 1990 Phys. Rev. Lett. 65 3152
[1] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[2] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[3] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[4] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[5] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[6] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[7] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[8] Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application
Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨). Chin. Phys. B, 2018, 27(8): 088802.
[9] Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope
Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖). Chin. Phys. B, 2018, 27(7): 077301.
[10] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[11] Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach
Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳). Chin. Phys. B, 2018, 27(2): 027101.
[12] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[13] 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲). Chin. Phys. B, 2018, 27(1): 018804.
[14] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[15] Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study
Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy. Chin. Phys. B, 2018, 27(1): 017102.
No Suggested Reading articles found!