Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098105    DOI: 10.1088/1674-1056/23/9/098105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures

Zhang Feng (张锋)a, Wang Hai-Qian (王海千)b, Wang Song (王松)c, Wang Jing-Yang (汪竟阳)c, Zhong Zhi-Cheng (钟志成)c, Jin Ye (金叶)a
a School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054, China;
b Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
c Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Xiangyang 441053, China
Abstract  Tungsten oxide thin films were deposited on glass substrates by the magnetron sputtering of WO3 bulk at room temperature. The deposited films were annealed at different temperatures in air. The structural measurements indicate that the films annealed below 300℃ were amorphous, while the films annealed at 400℃ were mixed crystalline with hexagonal and triclinic phases of WO3. It was observed that the crystallization of the annealed films becomes more and more distinct with an increase in the annealing temperature. At 400℃, nanorod-like structures were observed on the film surface when the annealing time was increased from 60 min to 180 min. The presence of W=O stretching, W-O-W stretching, W-O-W bending and various lattice vibration modes were observed in Raman measurements. The optical absorption behaviors of the films in the range of 450-800 nm are very different with changing annealing temperatures from the room temperature to 400℃. After annealing at 400℃, the film becomes almost transparent. Increasing annealing time at 400℃ can lead to a small blue shift of the optical gap of the film.
Keywords:  tungsten oxide film      magnetron sputtering      structure      optical property  
Received:  16 January 2014      Revised:  31 March 2014      Accepted manuscript online: 
PACS:  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11104365 and 11104366) and the Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, China (Grant No. 13XKL02002).
Corresponding Authors:  Zhang Feng     E-mail:  zf080707@cqut.edu.cn

Cite this article: 

Zhang Feng (张锋), Wang Hai-Qian (王海千), Wang Song (王松), Wang Jing-Yang (汪竟阳), Zhong Zhi-Cheng (钟志成), Jin Ye (金叶) Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures 2014 Chin. Phys. B 23 098105

[1] Deb S K 2008 Sol. Energy Mater. Sol. Cells 92 245
[2] Rao M C 2013 J. Non-oxide Glas. 5 1
[3] Kukkola J, Mäklina J, Halonena N, Kyllönena T, Tóth G Szabó M, Shchukarev A, Mikkola J P, Jantunen H and Kordás K 2011 Sensor Actuat B-Chem. 153 293
[4] Hu M, Jia D L, Liu Q L, Li M D and Sun P 2013 Chin. Phys. B 22 068204.
[5] Liu X, Wang F and Wang Q 2012 Phys. Chem. Chem. Phys. 14 7894
[6] Huang K, Zhang Q, Yang F and He D 2010 Nano Res. 3 281
[7] Migas D B, Shaposhnikov V L, Rodin V N and Borisenko V E 2010 J. Appl. Phys. 108 093713
[8] He X, Yin Y, Guo J, Yuan H, Peng Y, Zhou Y, Zhao D, Hai K, Zhou W and Tang D 2013 Nanoscale Res. Lett. 8 50
[9] He T and Yao J 2007 J. Mater. Chem. 17 4547
[10] Vemuri R S, Bharathi K K, Gullapalli S K and Ramana C V 2010 Appl. Mater. Inter. 2 2623
[11] Biswas S K and Baeg J O 2013 Int. J. Hydrogen Energy 38 3177
[12] Frey G L, Rothschild A, Sloan J, Rosentsveig R, Popovitz-Biro R and Tenne R 2001 J. Solid State Chem. 162 300
[13] Szilagyi I M, Santala E and Heikkila M 2011 J. Therm. Anal. Calorim. 105 73
[14] Breedon M, Spizzirri P, Taylor M, Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W and Kalantar-Zadeh K 2010 Cryst. Growth Des. 10 430
[15] Kim C Y, Lee M, Huh S H and Kim E K 2010 J. Sol-Gel Sci. Technol. 53 176
[16] Yang B, Barnes P R F, Zhang Y and Luca V 2007 Catal. Lett. 118 280
[17] Zheng F, Zhang M and Guo M 2013 Thin Solid Films 534 45
[18] Blackman C S and Parkin I P 2005 Chem. Mater. 17 1583
[19] Kim H, Senthil K and Yong K 2010 Mater. Chem. Phys. 120 452
[20] Zou Y S, Zhang Y C, Lou D, Wang H P, Gu L, Dong Y H, Dou K, Song X F and Zeng H B 2014 J. Alloy. Compd. 583 465
[21] Chena H C, Jan D J, Chena C H and Huang K T 2013 Electrochim. Acta 93 307
[22] Charles C, Martin N, Devel M, Ollitrault J and Billard A 2013 Thin Solid Films 534 275
[23] Imai M, Kikuchi M, Oka N and Shigesato Y 2012 J. Vac. Sci. Technol. A 30 031503
[24] Choi H W, Kim E J and Hahn S H 2010 Chem. Eng. J. 161 285
[25] Lü M S, Pang Z Y, Xiu X W, Dai Y and Han S H 2007 Chin. Phys. 16 548
[26] Acosta M, González D and Riech I 2009 Thin Solid Films 517 5442
[27] Yan J L, Zhao Y N and Li C 2014 Chin. Phys. B 23 048105
[28] Boonyopakorn N, Sripongpun N, Thanachayanont C and Dangtip S 2010 Chin. Phys. Lett. 27 108103
[29] Chen Y Y, Wang X, Cai X K, Yuan Z J, Zhu X M, Qiu D J and Wu H Z 2014 Chin. Phys. B 23 026101
[30] Peng L P, Fang L, Wu W D, Wang X M and Li L 2012 Chin. Phys. B 21 047305
[31] Horprathum M, Limwichean K, Wisitsoraat A, Eiamchai P, Aiempanakit K, Limnonthakul P, Nuntawong N, Pattantsetakul V, Tuantranont and Chindaudom A P 2013 Sensor Actuat. B-Chem. 176 685
[32] Johansson M B, Niklasson G and Osterlund L 2012 J. Mater. Res. 27 3130
[33] Vidyarthi V S, Hofmann M, Savan A, Sliozberg K, Konig D, Beranek R, Schuhmann W and Ludwig A 2011 Int. J. Hydrogen Energ. 36 4724
[34] Ramana C V, Utsunomiya S, Ewing R C, Julien C M and Becker U 2006 J. Phys. Chem. B 110 10430
[35] Pyper O, Kaschner A and Thomsen C 2002 Sol. Energy Mater. Sol. Cells 71 511
[36] Szilagyi I M, Wang L, Gouma P R, Balazsi C, Madarasz J and Pokol G 2009 Mater. Res. Bull. 44 505
[37] György E, Socol G and Mihailescu I N 2005 J. Appl. Phys. 97 093527
[38] Subrahmanyam A and Karuppasamy A 2007 Sol. Energy Mater. Sol. Cells 91 266
[39] Shen Y, Ding D, Yang Y, Li Zhen and Zhao L 2013 Mater. Res. Bull. 48 2317
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[10] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[11] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[12] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[13] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[14] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[15] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
No Suggested Reading articles found!