Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098103    DOI: 10.1088/1674-1056/23/9/098103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characterization of zirconium thin films deposited by pulsed laser deposition

Liu Wei (刘伟), Wan Jing-Ping (万竟平), Cai Wu-Peng (蔡吴鹏), Liang Jian-Hua (梁建华), Zhou Xiao-Song (周晓松), Long Xing-Gui (龙兴贵)
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Zirconium (Zr) thin films deposited on Si (100) by pulsed laser deposition (PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction (XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser-plasma interaction, the deposition rate significantly decreases from 0.0431 Å/pulse at 2 Hz to 0.0189 Å/pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy (AFM). The root mean square (RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate. The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.
Keywords:  laser processing      Zr thin film      droplet      pulse repetition rate  
Received:  02 January 2014      Revised:  25 February 2014      Accepted manuscript online: 
PACS:  81.15.Fg (Pulsed laser ablation deposition)  
  61.05.-a (Techniques for structure determination)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91126001).
Corresponding Authors:  Long Xing-Gui     E-mail:  mengdejuli2017@sina.cn

Cite this article: 

Liu Wei (刘伟), Wan Jing-Ping (万竟平), Cai Wu-Peng (蔡吴鹏), Liang Jian-Hua (梁建华), Zhou Xiao-Song (周晓松), Long Xing-Gui (龙兴贵) Characterization of zirconium thin films deposited by pulsed laser deposition 2014 Chin. Phys. B 23 098103

[1] Colasa K B, Mottaa A T, Almerb J D, Daymondc M R, Kerrc M, Banchikd A D, Vizcainod P and Santistebane J R 2010 Acta Mater. 58 6575
[2] Zütte A 2003 Materials Today 6 24
[3] Samala M K, Sanyalb G and Chakravartty J K 2011 Eng. Fall Anal. 18 2042
[4] Wang F and Gong H R 2012 Int. J. hydrogen. Energ. 37 9688
[5] Rapperport E J 1959 Acta Metall. 7 254
[6] Kaschner G C and Gray III G T 2000 Metall. Mater. Trans. A 31 1997
[7] Tenckhoff E 1988 ASTM, Philadelphia, p. 55
[8] Pilloud D, Pierson J F, Rousselot C and Palmino F 2005 Scripta Materialia 53 1031
[9] Pichon L, Girardeau T, Lignou F and Straboni A 1999 Thin Solid Films 342 93
[10] Singh A, Kuppusami P, Thirumurugesan R, Ramaseshan R, Kamruddin M, Dash S, Ganesan V and Mohandas E 2011 Appl. Surf. Sci. 257 9909
[11] Chakraborty J, Kishor Kumar K, Mukherjee S and Ray S K 2008 Thin Solid Films 516 8479
[12] Smardz L 2005 J. Alloy Compd. 395 17
[13] Ohring M 2002 The Materials Science of Thin Films (New York: Academic Press)
[14] He Y and Che J G 2000 Acta Phys. Sin. 49 1747 (in Chinese)
[15] De Bonis A, Galasso A, Ibris N, Sansone M, Santagata A and Teghil R 2012 Surf. Coat Tech. 207 279
[16] Guo Q L and Goodman D W 2001 Chin. Phys. 10 80
[17] Tan X Y, Liu D and Zhang D M 2006 Chin. Phys. Lett. 23 2277
[18] Verma S, Tirumala Rao B, Rai S, Ganesan V and Kukreja L M 2012 Appl. Surf. Sci. 258 4898
[19] Perrone A, Cultrera L, Lorusso A, Maiolo B and Strafella F 2013 J. Appl. Phys. 113 026102
[20] Ganser D, Gottmann J, Mackens U and Weichmann U 2010 Appl. Surf. Sci. 257 954
[21] Uccello A, Dellasega D, Perissinotto S, Lecis N and Passoni M 2013 J. Nucl. Mater. 432 261
[22] Lorusso A, De Giorgi M L, Fotakis C, Maiolo B, Miglietta P, Papadopoulou E L and Perrone A 2012 Appl. Surf. Sci. 258 8719
[23] Lorusso A, Cultrera L, Fasano V and Perrone A 2011 Nucl. Instrum. Meth. B 269 3091
[24] Van de Riet E, Nillesen C J C M and Dieleman J 1993 J. Appl. Phys. 74 2008
[25] Arias J L, Mayor M B, Pou J, Leon B and Erez-Amor M P 2002 Vacuum 67 653
[26] Guan L, DuanMing Z, Xu L and ZhiHua L 2008 Nucl. Instrum. Meth. B 266 57
[27] De Bonis A, Galasso A, Ibris N, Sansone M, Santagata A and Teghil R 2012 Surf. Coat Tech. 207 279
[28] Miglietta P, Fasano V, Papadopoulou E, Liu B, Horacio Rosa D and Perrone A 2012 Physics Procedia 32 335
[29] Dellasega D, Merlo G, Conti C, Bottani C E and Passoni M 2012 J. Appl. Phys. 112 084328
[30] Irissou E, Drogoff B L and Chaker M 2004 J. Mater. Res. 19 3
[31] Amoruso S 1999 Appl. Surf. Sci. 138-139 292
[32] Cultrera L, Zeifman M I and Perrone A 2006 Phys. Rev. B 73 075304
[33] Dima A, Perrone A and Klini A 2005 Appl. Surf. Sci. 247 38
[34] Hiroshima Y, Ishiguro T, Urata I, Makita H, Ohta H, Tohogi M and Ichinose Y 1996 J. Appl. Phys. 79 3572
[35] Singh R K, Bhattacharya D and Narayan J 1990 Appl. Phys. Lett. 57 2022
[1] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[2] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[3] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[4] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[5] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[6] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[7] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[8] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[9] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[10] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[11] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[12] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[13] Evaporation of saline colloidal droplet and deposition pattern
Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎). Chin. Phys. B, 2020, 29(1): 014701.
[14] Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel
Chao Wang(王超), Chao-qun Shen(沈超群), Su-chen Wu(吴苏晨), Xiang-dong Liu(刘向东), Fang-ping Tang(汤方平). Chin. Phys. B, 2019, 28(2): 024702.
[15] Microdroplet targeting induced by substrate curvature
Hongguang Zhang(张红光), Zhenjiang Guo(郭振江), Shan Chen(陈珊), Bo Zhang(张博), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(9): 096801.
No Suggested Reading articles found!