Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097201    DOI: 10.1088/1674-1056/23/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of traps’adjacency on the electric field dependence of mobility in organic systems

He Yun (何鋆), Chen Xiao-Qing (陈小青), Hou Xiao-Yuan (侯晓远)
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
Abstract  In some organic materials, varying the finite distance between adjacent carrier traps modifies the Coulomb potential around each trap, resulting in a more complex field-dependence of mobility, differing from (but not incompatible with) the usually considered relationship of ln μ ∝ √E, a relationship which has been successfully explained by the Poole-Frenkel effect. To investigate the influence of the adjacency of traps, a model system is proposed, which consists of two traps separated by distance α. Our numerical calculation shows that with increasing α, the dependence of mobility on the electric field changes from linear to exponential. Moreover, beyond a certain large α, i.e., as the distance to the nearest trap approaches infinity, the proposed model is essentially the same as the Poole-Frenkel effect. The proposed model accounts for the effect of the energy barrier shape, especially the effect of the location of the potential-energy maximum, a phenomenon which is not accommodated in the Poole-Frenkel model. Because the model assumes the Coulomb interaction between the adjacent traps, it applies to those charged traps which may exist in organic materials for various reasons.
Keywords:  electric field-dependent mobility      trap      organic semiconductor  
Received:  20 January 2014      Revised:  06 March 2014      Accepted manuscript online: 
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  81.05.Fb (Organic semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the Ministry of Science and Technology of China and the National Natural Science Foundation of China.
Corresponding Authors:  Hou Xiao-Yuan     E-mail:  xyhou@fudan.edu.cn

Cite this article: 

He Yun (何鋆), Chen Xiao-Qing (陈小青), Hou Xiao-Yuan (侯晓远) Effect of traps’adjacency on the electric field dependence of mobility in organic systems 2014 Chin. Phys. B 23 097201

[1] Jurchescu O D, Baas J and Palstra T T M 2004 Appl. Phys. Lett. 84 3061
[2] Pope M and Swenberg C E 1999 Electronic Processes in Organic Crystals and Polymers (2nd edn.) (New York: Oxford University Press)
[3] Liu S W, Lee J H, Lee C C, Chen C T and Wang J K 2007 Appl. Phys. Lett. 91 142106
[4] Tse S C, Kwok K C and So S K 2006 Appl. Phys. Lett. 89 262102
[5] Cusumano P and Gambino S 2008 J. Electron. Mater. 37 231
[6] Mückl A G, Berleb S, Brütting W and Schwoerer M 2000 Synth. Met. 111-112 91
[7] Luo Y, Duan Y, Chen P, Zang C L, Xie Y, Zhao Y and Liu S Y 2012 Acta Phys. Sin. 61 147801 (in Chinese)
[8] Bässler H 1993 Phys. Status Solidi B 175 15
[9] Frenkel J 1938 Phys. Rev. 54 647
[10] Pai D M 1970 J. Chem. Phys. 52 2285
[11] Gill W D 1972 J. Appl. Phys. 43 5033
[12] Pai D M, Yanus J F, Stolka M, Renfer D S and Limburg 1983 W W Philos. Mag. B 48 505
[13] Schein L B, Peled A and Glatz D 1989 J. Appl. Phys. 66 686
[14] Borsenberger P M 1990 J. Appl. Phys. 68 5682
[15] Schein L B, Rosenberg A and Rice S L 1986 J. Appl. Phys. 60 4287
[16] Lemus S J S and Hirsh J 1986 Philos. Mag. B 53 25
[17] Abkowitz M, Knier F E, Yuh H J, Weagley R J and Stolka M 1987 Solid State Commun. 62 547
[18] Borsenberger P M, Mey W and Chowdry A 1978 J. Appl. Phys. 49 273
[19] Stolka M, Yanus J F and Pai D M 1984 J. Phys. Chem. 88 4707
[20] Blom P W M, de Jong M J M and van Munster M G 1997 Phys. Rev. B 55 R656
[21] Miller A and Abrahams E 1960 Phys. Rev. 120 745
[22] Ma S S, Xu H, Liu X L and Xiao J R 2006 Chin. Phys. 15 190
[23] Veaceslav C, Jérôme C, Demetrio A. da Silva Filho, Yoann O, Robert S and Jean-Luc Brédas 2007 Chem. Rev. 107 926
[24] Kaŭkauskas V, Tzeng H and Chen S A 2002 Appl. Phys. Lett. 80 2017
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[6] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[9] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[10] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[11] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[14] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[15] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
No Suggested Reading articles found!