Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090311    DOI: 10.1088/1674-1056/23/9/090311
GENERAL Prev   Next  

Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate

Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋)
College of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, China
Abstract  The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.
Keywords:  Bose-Einstein condensate      Landau damping and frequency-shift      Hartree-Fock-Bogoliubov approximation      Thomas-Fermi approximation  
Received:  27 January 2014      Revised:  04 March 2014      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11264039), the Key Discipline of Theoretical Physics of Xinjiang, China (Grant Nos. LLWLY201202 and LLWLY201203), and the Postgraduate Scientific and Theoretical Innovation Project of Xinjiang Normal University, China (Grant No. 20131234).
Corresponding Authors:  Ma Xiao-Dong     E-mail:  xdma07@aliyun.com

Cite this article: 

Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋) Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate 2014 Chin. Phys. B 23 090311

[1] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (1st edn.) (Cambridge University Press) p. 22
[2] Stringari S 1996 Phys. Rev. Lett. 77 2360
[3] Fetter A L 1996 Phys. Rev. A 53 4245
[4] Ruprecht P A, Edwards M, Burnett K and Clark C W 1996 Phys. Rev. A 54 4178
[5] Dalfovo F, Minniti C and Pitaevskii L P 1997 Phys. Rev. A 56 4855
[6] Morgan S A, Choi S, Burnett K and Edwards M 1998 Phys. Rev. A 57 3818
[7] Hechenblaikner G, Maragó O M, Hodby E, Arlt J, Hopkins S and Foot C J 2000 Phys. Rev. Lett. 85 692
[8] Hodby E, Maragó O M, Hechenblaikner G and Foot C J 2001 Phys. Rev. Lett. 86 2196
[9] Maragó O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikne G and Foot C J 2000 Phys. Rev. Lett. 84 2056
[10] Khawaja U A1 and Stoof H T C 2001 Phys. Rev. A 65 013605
[11] Hechenblaikner G, Morgan S A, Hodby E, Maragó O M and Foot C J 2002 Phys. Rev. A 65 033612
[12] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[13] Ma Y L and Chui S T 2002 Phys. Rev. A 65 053610
[14] Hu B, Huang G and Ma Y L 2004 Phys. Rev. A 69 063608
[15] Huang G, Szeftel J and Zhu S 2002 Phys. Rev. A 65 053605
[16] Li C, Ma X, Ma Y L and Huang G 2013 J. Phys. Soc. Jpn. 82 044002
[17] Dong H and Ma Y L 2009 Chin. Phys. B 18 715
[18] Peng P and Li G Q 2009 Chin. Phys. B 18 3221
[19] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[20] Jin D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1997 Phys. Rev. Lett. 78 764
[21] Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420
[22] Chevy F, Bretin V, Rosenbusch P, Madison K W and Dalibard J 2002 Phys. Rev. Lett. 88 250402
[23] Stamper-Kurn D M, Miesner H J, Inouye S, Andrews M R and Ketterle W 1998 Phys. Rev. Lett. 81 500
[24] Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E and Ketterle W 2000 Phys. Rev. Lett. 84 810
[25] Maragó O, Hechenblaikner J, Hodby E and Foot C 2001 Phys. Rev. Lett. 86 3938
[26] Mewes M O, Andrews M R, Druten N J V, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1996 Phys. Rev. Lett. 77 988
[27] Zaremba E, Griffin A and Nikuni T 1998 Phys. Rev. A 57 4695
[28] Zaremba E, Nikuni T and Griffin A 1999 J. Low Temp. Phys. 116 277
[29] Jackson B and Zaremba E 2002 Phys. Rev. Lett. 88 180402
[30] Jackson B and Zaremba E 2002 Phys. Rev. Lett. 89 150402
[31] Morgan S A, Rusch M, Hutchinson D A W and Burnett K 2003 Phys. Rev. Lett. 91 250403
[32] Morgan S A 2004 Phys. Rev. A 69 023609
[33] Giorgini S 1998 Phys. Rev. A 57 2949
[34] Giorgini S 2000 Phys. Rev. A 61 063615
[35] Pitaevskii L P and Stringari S 1997 Phys. Lett. A 235 398
[36] Fedichev P O, Shlyapnikov G V and Walraven J T M 1998 Phys. Rev. Lett. 80 2269
[37] Reidl J, Csordás A, Graham R and Szépfalusy P 2000 Phys. Rev. A 61 043606
[38] Tsuchiya S and Griffin A 2005 Phys. Rev. A 72 053621
[39] Guilleumas M and Pitaevskii L P 2003 Phys. Rev. A 67 053607
[40] Guilleumas M and Pitaevskii L P 1999 Phys. Rev. A 61 013602
[41] Ma X, Ma Y L and Huang G 2007 Phys. Rev. A 75 013628
[42] Ma X, Zhou Y, Ma Y L and Huang G 2006 Chin. Phys. 15 1871
[43] Ma X, Ma Y L and Huang G 2007 Chin. Phys. Lett. 24 616
[44] Chai Z, Zhou Y and Ma X 2013 Acta Phys. Sin. 13 130307 (in Chinese)
[45] Ma X, Yang Z, Lu J and Wei W 2011 Chin. Phys. B 20 070307
[46] Yang Z, Chai Z, Li C and Ma X 2012 Commun. Theor. Phys. 57 789
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[8] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!