Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088701    DOI: 10.1088/1674-1056/23/8/088701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers

Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏)
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract  We propose a novel kind of wavelength-selective coupling for the terahertz range based on solid five-core fiber (FCF). The performances of coupling, propagation characteristics, and confinement loss properties are numerically investigated by using a full vector beam propagation method (BPM). Simulation results show that it is possible to realize a broadband wavelength-selective coupling. The coupling length can reach 1.913 cm, and the confinement loss is better than 1.965× 10-4 cm-1. Furthermore, a parameter, the power difference, is defined, and it numerically demonstrates the working performance of the wavelength-selective coupler; that is, when the power difference is better than -15 dB, the frequency located in the range of 0.76 THz-1.00 THz is separated relatively well from the frequency of 0.3 THz. Finally, the effect of the structural parameter on the working performance of the coupler is also investigated. We show that the performance optimization is possible by appropriately tuning the core diameter, and the tunabilities of frequency and bandwidth are possible by appropriately tuning the pitch. The wavelength-selective coupler is of potential application for optical fiber sensing and communication in terahertz wavelength division multiplexer fields.
Keywords:  terahertz      terahertz waveguides      coupling      multi-core fiber  
Received:  09 November 2013      Revised:  05 March 2014      Accepted manuscript online: 
PACS:  87.50.U-  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Specific Scientific and Technological Cooperation between China and Russia (Grant No. 2010DFR80140) and the National Natural Science Foundation of China (Grant No. 51309059).
Corresponding Authors:  Yu Ying-Ying     E-mail:  yuyingying58@hotmail.com

Cite this article: 

Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏) Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers 2014 Chin. Phys. B 23 088701

[1] Chen H T, Kersting R and Cho G C 2003 Appl. Phys. Lett. 83 3009
[2] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[3] Kim S, Zimmerman J D, Focardi P, Gossard A C, Wu D H and Sherwin M S 2008 Appl. Phys. Lett. 92 253508
[4] Lu X, Karpowicz N and Zhang X C 2009 J. Opt. Soc. Am. B 26 A66
[5] Song Q, Zhao Y, Redo-Sanchez A, Zhang C and Liu X 2009 Opt. Commun. 282 2019
[6] Liu H B, Zhong H, Karpowicz N, Chen Y and Zhang X C 2007 Proc. IEEE 95 1514
[7] Kleine-Ostmann T, Pierz K, Hein G, Dawson P and Koch M 2004 Electron. Lett. 40 124
[8] Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T and Kukutsu N 2012 Electron. Lett. 48 953
[9] Zhao X X, Zhu Q F and Zhang Y 2009 Chin. Phys. B 18 2864
[10] Zhang H Y, Gao Y, Zhang Y P and Wang S F 2011 Chin. Phys. B 20 094101
[11] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[12] Cho M, Kim J, Park H, Han Y, Moon K, Jung E and Han H 2008 Opt. Express 16 7
[13] Lai C H, Hsueh Y C, Chen H W, Huang Y J, Chang H C and Sun C K 2009 Opt. Lett. 34 3457
[14] Chen D R and Chen H 2010 Opt. Express 18 3762
[15] Chen L J, Chen H W, Kao T F, Lu J Y and Sun C K 2006 Opt. Lett. 31 308
[16] Chen D R and Tam H Y 2010 Journal of Lightwave Technology 28 1858
[17] Bai J J, Wang C H, Huo B Z, Wang X H and Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese)
[18] Yin G B, Li S G, Wang X Y and Liu S 2011 Chin. Phys. B 20 090701
[19] Nielsen K, Rasmussen K H, Jepsen U P and Bang O 2010 Opt. Lett. 35 2879
[20] Chen M Y, Fu X X and Zhang Y K 2011 J. Phys. D: Appl. Phys. 44 405104
[21] Bai J J, Wang C H, Hou Y, Fan F and Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)
[22] Jiang Z W, Bai J J, Hou Y, Wang X H and Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)
[23] Li S S, Zhang H, Hou Y, Bai J J, Liu W W and Chang S J 2013 Appl. Opt. 52 3305
[24] Sun X W 2007 Opt. Lett. 32 2484
[25] Atakaramians S, Afshar V S, Monro T M and Abbott D 2013 Adv. Opt. Photon. 5 169
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[7] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[8] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[9] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[10] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[13] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[14] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[15] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
No Suggested Reading articles found!