Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070202    DOI: 10.1088/1674-1056/23/7/070202
GENERAL Prev   Next  

Non-autonomous discrete Boussinesq equation:Solutions and consistency

Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军)
Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  A non-autonomous 3-component discrete Boussinesq equation is discussed. Its spacing parameters pn and qm are related to independent variables n and m, respectively. We derive bilinear form and solutions in Casoratian form. The plain wave factor is defined through the cubic roots of unity. The plain wave factor also leads to extended non-autonomous discrete Boussinesq equation which contains a parameter δ. Tree-dimendional consistency and Lax pair of the obtained equation are discussed.
Keywords:  non-autonomous discrete Boussinesq equation      bilinear      solutions      Lax pair  
Received:  27 November 2013      Revised:  05 January 2014      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11071157 and 11371241), the Social Responsibility Foundation for the Doctoral Program of Higher Education of China (Grant No. 20113108110002), and the Project of "First-class Discipline of Universities in Shanghai" of China.
Corresponding Authors:  Nong Li-Juan     E-mail:  nonglijuan2008@163.com
About author:  02.30.Ik; 05.45.Yv

Cite this article: 

Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军) Non-autonomous discrete Boussinesq equation:Solutions and consistency 2014 Chin. Phys. B 23 070202

[1] Nijhoff F W and Walker A J 2001 Glasgow Math. J. 43A 109
[2] Nijhoff F W 2002 Phys. Lett. A 297 49
[3] Bobenko A I and Suris Y B 2002 Int. Math. Res. Not. 11 573
[4] Adler V E, Bobenko A I and Suris Yu B 2003 Commun. Math. Phys. 233 513
[5] Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204
[6] Grammaticos B and Ramani A 2010 Lett. Math. Phys. 92 33
[7] Shi Y and Zhang D J 2012 arXiv:1201.6408[nonl.SI]
[8] Hietarinta J and Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006
[9] Hietarinta J and Zhang D J 2011 SIGMA 7 061
[10] Zhang D J, Zhao S L and Nijhoff F W 2012 Stud. Appl. Math. 129 220
[11] Tongas A and Nijhoff F 2005 Glasgow Math. J. 47A 205
[12] Hietarinta J and Zhang D J 2010 J. Phys. A: Math. Theor. 51 033505
[13] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[14] Nong L J, Zhang D J, Shi Y and Zhang W Y 2013 Chin. Phys. Lett. 30 040201
[15] Hietarinta J and Viallet C 2012 Nonlinearity 25 1955
[16] Atkinson J, Hietarinta J and Nijhoff F 2007 J. Phys. A: Math. Theor. 40 F1
[17] Atkinson J, Hietarinta J and Nijhoff F 2008 J. Phys. A: Math. Theor. 41 142001
[18] Grammaticos B, Ramani A and Papageorgiou V 1991 Phys. Rev. Lett. 67 1825
[19] Hietarinta J 2005 J. Nonl. Math. Phys. 12 223
[20] Kajiwara K and Mukaihira A 2005 J. Phys. A: Math. Gen. 38 6363
[21] Kajiwara K and Ohta Y 2008 J. Phys. Soc. Jpn. 77 054004
[22] Kajiwara K and Ohta Y 2009 RIMS Kôkyûroku Bessatsu B13 53
[23] Nijhoff F, Papageorgiou V, Capel H and Quispel G 1992 Inv. Probl. 8 597
[24] Nijhoff F 1999 Discrete Integrable Geometry and Physics (Oxford: Clarendon Press) p. 209
[25] Papageorgiou V, Grammaticos B and Ramani A 1993 Phys. Lett. A 179 111
[26] Sahadevan R, Rasinb O and Hydon P 2007 J. Math. Anal. Appl. 331 712
[27] Walker A J 2001 Similarity Reductions and Integrable Lattice Equations (Ph.D. thesis) (Leeds: Leeds University)
[28] Zhang D J 2006 Chin. Phys. Lett. 23 2349
[29] Zhang D J, Ning T K, Bi J B and Chen D Y 2006 Phys. Lett. A 359 458
[30] Zhang D J 2006 arXiv:nlin.SI/0603008[hep-ph]
[31] Zhang D J and Hietarinta J 2010 Nonlinear and Modern Mathematical Physics: Proceedings of the First International Workshop, July 15-21, 2009 Beijing, China, pp. 154-161
[32] Zhao S L, Zhang D J and Shi Y 2012 Chin. Ann. Math. 33B 259
[33] Lou S Y, Li Y Q and Tang X Y 2013 Chin. Phys. Lett. 30 080202
[34] Dong Z Z and Chen Y 2010 Commun. Theor. Phys. 54 389
[35] Wang X, Chen Y and Dong Z Z 2014 Chin. Phys. B 23 010201
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[8] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[11] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[12] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[13] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[14] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[15] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
No Suggested Reading articles found!