Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070201    DOI: 10.1088/1674-1056/23/7/070201
GENERAL   Next  

Symmetries and variational calculationof discrete Hamiltonian systems

Xia Li-Li (夏丽莉)a b, Chen Li-Qun (陈立群)b c d, Fu Jing-Li (傅景礼)e, Wu Jing-He (吴旌贺)a
a Department of Physics, Henan Institute of Education, Zhengzhou 450046, China;
b Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
c Department of Mechanics, Shanghai University, Shanghai 200444, China;
d Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China;
e Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
Keywords:  discrete Hamiltonian systems      discrete variational integrators      symmetry      conserved quantity  
Received:  17 October 2013      Revised:  26 January 2014      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 11232009), the National Natural Science Foundation of China (Grant Nos. 11072218, 11272287, and 11102060), the Shanghai Leading Academic Discipline Project, China (Grant No. S30106), the Natural Science Foundation of Henan Province, China (Grant No. 132300410051), and the Educational Commission of Henan Province, China (Grant No. 13A140224).
Corresponding Authors:  Chen Li-Qun     E-mail:  lqchen@straff.shu.edu.cn
About author:  02.20.Sv; 02.20.Qs; 11.30.-j; 45.20.Jj

Cite this article: 

Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺) Symmetries and variational calculationof discrete Hamiltonian systems 2014 Chin. Phys. B 23 070201

[1] Noether A E 1918 Math. Phys. KI. 2 235
[2] Djukic D D S and Vujanovic B D 1975 Acta Mech. 23 17
[3] Sarlet W and Cantrijn F 1981 SIAM Rev. 23 467
[4] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[5] Lutzky M 1979 Phys. Lett. A 72 86
[6] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[7] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[8] Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20 668
[9] Dorodnitsyn V 2011 Applications of Lie Groups to Difference Equations (Boca Raton, FL: Chapman & Hall/CRC)
[10] Logan J D 1973 Aequat. Math. 9 210
[11] Dorodnitsyn V 2001 Appl. Numer. Math. 39 307
[12] Dorodnitsyn V and Kozlov R 2009 J. Phys. A: Math. Theor. 42 454007
[13] Fu J L, Dai G D, Salvador J and Tang Y F 2007 Chin. Phys. 16 570
[14] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A: Math. Gen. 33 8507
[15] Xia L L and Chen L Q 2012 Nonlinear Dyn. 70 1223
[16] Grinspun E, Desbrun M, Polthier K, Schröder P and Stern A 2006 Discrete Differential Geometry: An Applied Introduction – The 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques, July 30-August 3, 2006 Boston, USA, (ACM SIGGRAPH 2006 Course 1)
[17] Cadzow J A 1970 Int. J. Control 11 393
[18] Wendlandt J M and Marsden J E 1997 Physica D: Nonlinear Phenomena 106 223
[19] Marsden J E, Patrick G W and Shkoller S 1998 Commun. Math. Phys. 199 351
[20] Kane C, Marsden J E and Ortiz M 1999 J. Math. Phys. 40 3353
[21] Cortés J and Martínez S 2001 Nonlinearity 14 1365
[22] Guo H Y, Wu K, Wang S H, Wang S K and Wei J M 2000 Commun. Theor. Phys. 34 307
[23] Guo H Y, Li Y Q and Wu K 2001 Commun. Theor. Phys. 35 703
[24] Chen J B, Guo H Y and Wu K 2003 J. Math. Phys. 44 1688
[25] McLachlan R and Perlmutter M 2006 J. Nonlinear Sci. 16 283
[26] Guo H Y and Wu K 2003 J. Math. Phys. 44 5978
[27] Liu S X, Liu C and Guo Y X 2011 Chin. Phys. B 20 034501
[28] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[29] Kane C, Marsden J E, Ortiz M and West M 1999 Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems (Ph.D. dissertation) (California: Caltech)
[30] Maeda S 1980 Math. Japonica 25 405
[31] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[32] Dorodnitsyn V and Winternitz P 2000 Nonlinear Dyn. 22 49
[33] Bahar L Y and Kwatny H G 1987 Int. J. Nonlinear Mech. 22 125
[34] Miller K S 1968 The American Mathematical Monthly 75 630
[35] Marsden J E and West M 2001 Acta Numerica 10 357
[36] Hairer E, Lubich C and Wanner G 2003 Acta Numerica 12 399
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[3] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[10] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!