Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090202    DOI: 10.1088/1674-1056/abeb0b
GENERAL Prev   Next  

Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field

Yu-Song Hu(胡玉松)1, Min Jiang(江敏)1, Tao Hong(洪涛)1,†, Zheng-Ming Tang(唐正明)1, and Ka-Ma Huang(黄卡玛)2
1 School of Electronic Information Engineering, China West Normal University, Nanchong 637000, China;
2 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
Abstract  The response of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics subjected to alternating current (AC) or direct current (DC) bias magnetic field is evaluated by the reaction-diffusion equation for the probability distribution function of the molecular concentration in the spherical coordinate system. The magnetization function and the probability distribution function of the magnetic particles in the reaction system are derived by using the Legendre polynomials and Laplace transform. We discuss the characteristics of magnetization and probability distribution of the magnetic particles with different anisotropic parameters driven by a DC and AC magnetic fields, respectively. It is shown that both the magnetization and the probability distribution decrease with time increasing due to the reaction process. The uniformity of the probability distribution and the amplitude of the magnetization are both affected by the anisotropic parameters. Meanwhile, the difference between the case with linear reaction dynamics and the non-reaction case is discussed.
Keywords:  linear reaction      probability distribution      magnetization      anisotropic  
Received:  25 December 2020      Revised:  24 February 2021      Accepted manuscript online:  02 March 2021
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
  13.40.Em (Electric and magnetic moments)  
  82.90.+j (Other topics in physical chemistry and chemical physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001398 and 61731013) and the China West Normal University of Sichuan, China (Grant Nos. 416681 and 416682).
Corresponding Authors:  Tao Hong     E-mail:  scu mandela@163.com

Cite this article: 

Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛) Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field 2021 Chin. Phys. B 30 090202

[1] Sandish N and Huang W 1991 ISIJ Int. 31 241
[2] Ishizaki K, Nagata K and Hayashi T 2006 ISIJ Int. 46 1403
[3] Ishizaki K, Nagata K and Hayashi T 2007 ISIJ Int. 47 817
[4] Ishizaki K and Nagata K 2007 ISIJ Int. 47 811
[5] Kashimura K, Sato M, Hotta M, Agrawal D K, Nagata K, Hayashi M, Mitani T and Shinohara N 2012 Mater. Sci. Eng. A 556 977
[6] Goto H, Fukushima J and Takizawa H 2016 Materials 9 169
[7] Fukushima J, Takayama S, Goto H, Sato M and Takizawa H 2017 Phys. Chem. Chem. Phys. 19 17904
[8] Néel L 1949 Ann. Geophys. 5 99
[9] Brown W F 1963 Phys. Rev. 130 1677
[10] Cregg P J, Crothers D S F and Wickstead A W 1994 J. Appl. Phys. 76 4900
[11] Kalmykov Yu P 2004 J. Appl. Phys. 96 1138
[12] Kalmykov Yu P and Titov S V 1998 Phys. Solid State 40 1492
[13] Déjardin P M and Kalmykov Yu P 2009 J. Appl. Phys. 106 123908
[14] Brown W F 1979 IEEE Trans. Magn. 15 1196
[15] Hong T, Tang Z M, Zhou Y H, Zhu H C and Huang K M 2019 Chem. Phys. Lett. 727 66
[16] Huang K M and Hong T 2015 J. Phys. Chem. A 119 8898
[17] Hong T and Huang K M 2015 J. Phys. Org. Chem. 28 414
[18] Coffey W T, Crothers D S F, Kalmykov Yu P and Waldron J T 1995 Phys. Rev. B 51 15947
[19] Coffey W T, Crothers D S F and Kalmykov Yu P 2006 J. Non-cryst. Solids 352 4710
[20] Debye P 1929 Polar molecules (New York: Chemical Catalog Company)
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[4] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[5] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[6] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[7] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[8] Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
Wei-Bu Wang(王韦卜), Xing-Yuan Li(李兴元), and Ji-Guo Su(苏计国). Chin. Phys. B, 2022, 31(6): 068704.
[9] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[12] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[13] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[14] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[15] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
No Suggested Reading articles found!