Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064206    DOI: 10.1088/1674-1056/23/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses

Feng Li-Qiang (冯立强)a c, Liu Hang (刘航)b, Liu Xing-Jiang (刘兴江)c
a College of Science, Liaoning University of Technology, Jinzhou 121000, China;
b School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000, China;
c School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121000, China
Abstract  We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selective enhancement scheme. The results show that by properly controlling the delay times of a two-color field or a three-color field, selective enhancement of the harmonics with photon energies between 80 eV and 315 eV can be obtained. Further, a wavelength-tunable and bandwidth-controllable XUV radiation can be obtained by Fourier transformation of these enhanced harmonics.
Keywords:  high-order harmonic generation      XUV pulse      harmonic selective enhancement  
Received:  15 September 2013      Revised:  07 November 2013      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: Project supported by the Scientific Research Fund of Liaoning Provincial Education Department, China (Grant No. L2012223) and the Scientific Research Fund of Liaoning University of Technology, China (Grant Nos. X201319 and X201312).
Corresponding Authors:  Feng Li-Qiang, Liu Xing-Jiang     E-mail:  lqfeng_lngy@126.com;arthur45415@163.com

Cite this article: 

Feng Li-Qiang (冯立强), Liu Hang (刘航), Liu Xing-Jiang (刘兴江) Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses 2014 Chin. Phys. B 23 064206

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Osborne I and Yeston J 2007 Science 317 765
[3] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[4] Agostini P and DiMauro L 2004 Rep. Prog. Phys. 67 813
[5] Zhou Z Y and Yan J M 2008 Chin. Phys. B 17 4523
[6] Yun C X, Teng H, Zhang W, Zhan M J, Han H N, Zhong X, Wei Z Y, Wang B B and Hou X 2010 Chin. Phys. B 19 124210
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
[8] Feng L Q and Chu T S 2012 Chin. Phys. B 21 124204
[9] Zeng Z, Cheng Y, Song X, Li R and Xu Z 2007 Phys. Rev. Lett. 98 203901
[10] Zhang G T, Wu J, Xia C L and Liu X S 2009 Phys. Rev. A 80 055404
[11] Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
[12] Ishikawa K 2003 Phys. Rev. Lett. 91 043002
[13] Lan P F, Lu P X, Li Q G, Li F, Hong W Y and Zhang Q B 2009 Phys. Rev. A 79 043413
[14] Zhai Z and Liu X S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125602
[15] Zhang C J, Yao J P, Ni J L, Li G H, Cheng Y and Xu Z Z 2012 Opt. Express 20 16544
[16] Dasilva L B, Baraee T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E, Wan A S and Weber F 1995 Phys. Rev. Lett. 74 3991
[17] Warntjes J B M, Gurtler A, Osterwalder A, Rosca-Pruna F, Vrakking M J J and Noordam L D 2001 Opt. Lett. 16 1463
[18] Tosa V, Takahashi E, Nabekawa Y and Midorikawa K 2003 Phys. Rev. A 67 063817
[19] Zhang X S, Lytle A L, Popmintchev T, Zhou X B, Kapteyn H C, Mumane M M and Cohen O 2007 Nat. Phys. 3 270
[20] Rae S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946
[21] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
[22] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[23] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[24] Zhang P Y, Lu R F, Chu T S and Han K L 2010 J. Chem. Phys. 133 174316
[25] Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347
[26] Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
[27] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[28] Mairesse Y, Bohan A D, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540
[29] Zeng Z N, Cheng Y, Fu Y X, Song X H, Li R X and Xu Z Z 2008 Phys. Rev. A 77 023416
[30] Yao J P, Cheng Y, Chen J, Zhang H S, Xu H, Xiong H, Zeng B, Chu W, Ni J L, Liu X and Xu Z Z 2011 Phys. Rev. A 83 033835
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[7] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[8] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[9] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[10] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[11] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[12] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
[13] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[14] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[15] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
No Suggested Reading articles found!