ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses |
Feng Li-Qiang (冯立强)a c, Liu Hang (刘航)b, Liu Xing-Jiang (刘兴江)c |
a College of Science, Liaoning University of Technology, Jinzhou 121000, China; b School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000, China; c School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121000, China |
|
|
Abstract We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selective enhancement scheme. The results show that by properly controlling the delay times of a two-color field or a three-color field, selective enhancement of the harmonics with photon energies between 80 eV and 315 eV can be obtained. Further, a wavelength-tunable and bandwidth-controllable XUV radiation can be obtained by Fourier transformation of these enhanced harmonics.
|
Received: 15 September 2013
Revised: 07 November 2013
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the Scientific Research Fund of Liaoning Provincial Education Department, China (Grant No. L2012223) and the Scientific Research Fund of Liaoning University of Technology, China (Grant Nos. X201319 and X201312). |
Corresponding Authors:
Feng Li-Qiang, Liu Xing-Jiang
E-mail: lqfeng_lngy@126.com;arthur45415@163.com
|
Cite this article:
Feng Li-Qiang (冯立强), Liu Hang (刘航), Liu Xing-Jiang (刘兴江) Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses 2014 Chin. Phys. B 23 064206
|
[1] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[2] |
Osborne I and Yeston J 2007 Science 317 765
|
[3] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[4] |
Agostini P and DiMauro L 2004 Rep. Prog. Phys. 67 813
|
[5] |
Zhou Z Y and Yan J M 2008 Chin. Phys. B 17 4523
|
[6] |
Yun C X, Teng H, Zhang W, Zhan M J, Han H N, Zhong X, Wei Z Y, Wang B B and Hou X 2010 Chin. Phys. B 19 124210
|
[7] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[8] |
Feng L Q and Chu T S 2012 Chin. Phys. B 21 124204
|
[9] |
Zeng Z, Cheng Y, Song X, Li R and Xu Z 2007 Phys. Rev. Lett. 98 203901
|
[10] |
Zhang G T, Wu J, Xia C L and Liu X S 2009 Phys. Rev. A 80 055404
|
[11] |
Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
|
[12] |
Ishikawa K 2003 Phys. Rev. Lett. 91 043002
|
[13] |
Lan P F, Lu P X, Li Q G, Li F, Hong W Y and Zhang Q B 2009 Phys. Rev. A 79 043413
|
[14] |
Zhai Z and Liu X S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125602
|
[15] |
Zhang C J, Yao J P, Ni J L, Li G H, Cheng Y and Xu Z Z 2012 Opt. Express 20 16544
|
[16] |
Dasilva L B, Baraee T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E, Wan A S and Weber F 1995 Phys. Rev. Lett. 74 3991
|
[17] |
Warntjes J B M, Gurtler A, Osterwalder A, Rosca-Pruna F, Vrakking M J J and Noordam L D 2001 Opt. Lett. 16 1463
|
[18] |
Tosa V, Takahashi E, Nabekawa Y and Midorikawa K 2003 Phys. Rev. A 67 063817
|
[19] |
Zhang X S, Lytle A L, Popmintchev T, Zhou X B, Kapteyn H C, Mumane M M and Cohen O 2007 Nat. Phys. 3 270
|
[20] |
Rae S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946
|
[21] |
Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
|
[22] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[23] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[24] |
Zhang P Y, Lu R F, Chu T S and Han K L 2010 J. Chem. Phys. 133 174316
|
[25] |
Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347
|
[26] |
Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
|
[27] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[28] |
Mairesse Y, Bohan A D, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540
|
[29] |
Zeng Z N, Cheng Y, Fu Y X, Song X H, Li R X and Xu Z Z 2008 Phys. Rev. A 77 023416
|
[30] |
Yao J P, Cheng Y, Chen J, Zhang H S, Xu H, Xiong H, Zeng B, Chu W, Ni J L, Liu X and Xu Z Z 2011 Phys. Rev. A 83 033835
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|