a State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China; b College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.
(Other nonlinear optical materials; photorefractive and semiconductor materials)
Fund: Project supported by the Postdoctoral Fund of China (Grant No. 2011M501402), the National Natural Science Foundation of China (Grant No. 61275039), the 973 Program of China (Grant No. 2012CB315702), the Key Project of the Chinese Ministry of Education, China (Grant No. 210186), and the Major Project of the Natural Science Foundation supported by the Educational Department of Sichuan Province, China (Grant Nos. 13ZA0081 and 12ZB019).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.