INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering |
Huang Shi-Hua (黄仕华), Liu Jian (刘剑) |
Physics Department, Zhejiang Normal University, Zhejiang 321004, China |
|
|
Abstract Si-rich Si1-xCx/SiC multilayer thin films are prepared using magnetron sputtering, subsequently followed by thermal annealing in the range of 800-1200 ℃. The influences of annealing temperature (Ta) on the formation of Si and/or SiC nanocrystals (NCs) and on the electrical characteristics of the multilayer film are investigated by using a variety of analytical techniques, including X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectrometry (FT-IR), current-voltage (I-V) technique, and capacitance-voltage (C-V) technique. XRD and Raman analyses indicate that Si NCs begin to form in samples for Ta ≥ 800 ℃. At annealing temperatures of 1000 ℃ or higher, the formation of Si NCs is accompanied by the formation of SiC NCs. With the increase in the annealing temperature, the shift of FT-IR Si-C bond absorption spectra toward a higher wave number along with the change of band shape can be explained by a Si-C transitional phase between the loss of substitutional carbon and the formation of SiC precipitates and a precursor for the growth of SiC crystalline. The C-V and I-V results indicate that the interface quality of Si1-xCx/SiC multilayer film is improved significantly and the leakage current is reduced rapidly for Ta ≥ 1000 ℃, which can be ascribed to the formation of Si and SiC NCs.
|
Received: 08 August 2013
Revised: 31 October 2013
Accepted manuscript online:
|
PACS:
|
81.15.Cd
|
(Deposition by sputtering)
|
|
78.55.Ap
|
(Elemental semiconductors)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University, China (Grant No. FDS-KL2011-04), the Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2011R50012), and the Key Laboratory of Zhejiang Province, China (Grant No. 2013E10022). |
Corresponding Authors:
Huang Shi-Hua
E-mail: huangshihua@zjnu.cn
|
About author: 81.15.Cd; 78.55.Ap; 68.55.A-; 81.40.Ef |
Cite this article:
Huang Shi-Hua (黄仕华), Liu Jian (刘剑) Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering 2014 Chin. Phys. B 23 058105
|
[1] |
Cazzanelli M, Navarro-Urriós D, Riboli F, Daldosso N, Pavesi L, Heitmann J, Yi L X, Scholz R, Zacharias M and Gosele U 2004 J. Appl. Phys. 96 3164
|
[2] |
Green M A, Cho E C, Cho Y H, Pink E, Trupke T, Lin K L, Fangsuwannarak T, Puzzer T, Conibeer G and Corkish R 2005 Proceeding of the 20th European Photovoltaic Solar Energy Conference, June, 2005, Barcelona, Spain, p. 3
|
[3] |
Song D, Cho E C, Conibeer G, Cho Y H, Huang Y, Huang S, Flynn C and Green M A 2007 J. Vac. Sci. Technol. B 25 1327
|
[4] |
Zhang Q, Zhang Y M, Yuan L, Zhang Y M, Tang X Y and Song Q W 2012 Chin. Phys. B 21 088502
|
[5] |
Zhang F S and Li X R 2011 Chin. Phys. B 20 067102
|
[6] |
Daldosso N, Das G, Larcheri S, Mariotto G, Dalba G, Pavesi L, Irrera A, Priolo F and Rocca F 2007 J. Appl. Phys. 101 113510
|
[7] |
Wang M H, Li D S, Yuan Z Z, Yang D R and Que D L 2007 Appl. Phys. Lett. 90 131903
|
[8] |
Kurokawa Y, Miyajima S, Yamada A and Konagai M 2006 Jpn. J. Appl. Phys. 45 1064
|
[9] |
Song D, Cho E C, Conibeer G, Huang Y, Flynn C and Green M A 2008 J. Appl. Phys. 103 083544
|
[10] |
Wang Y H, Zhang Y M, Zhang Y M, Zhang L, Jia R X and Chen D 2010 Chin. Phys. B 19 036803
|
[11] |
Jiang C W and Green M A 2006 J. Appl. Phys. 99 114902
|
[12] |
Song D, Cho E C, Conibeer G, Flynn C, Huang Y and Green M A 2008 Sol. Energy. Mater. Sol. Cells 92 474
|
[13] |
Song D, Cho E C, Cho Y H, Conibeer G, Huang Y, Huang S and Green M A 2008 Thin Solid Films 516 3824
|
[14] |
Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M and Bl?sing J 2002 Appl. Phys. Lett. 80 661
|
[15] |
Conibeer G, Green M A, Corkish R, Cho Y H, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A and Lin K L 2006 Thin Solid Films 511 654
|
[16] |
Dhar S, Feldman L C, Wang S, Isaacs-Smith T and Williams J R 2005 J. Appl. Phys. 98 014902
|
[17] |
Fernandes M, Vieira M, Rodrignes I and Martins R 2004 Sensor. Actuat. A 113 360
|
[18] |
Madani M, Colder H, Portier X, Zellama K, Rizk R and Bouchriha H 2006 Microelectron. J. 37 1031
|
[19] |
Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126
|
[20] |
Song D Y, Cho E C, Conibeer G, Huang Y D, Flynn C and Green M A 2008 J. Appl. Phys. 103 083544
|
[21] |
Lattemann M, Nold E, Ulrich S, Leiste H and Holleck H 2003 Surf. Coat. Tech. 174 365
|
[22] |
Wang Y H, Lin J and Huan C H A 2002 Mater. Sci. Eng. B 95 43
|
[23] |
Daldosso N, Das G, Larcheri S, Mariotto G, Dalba G, Pavesi L, Irrera A, Priolo F, Lacona F and Rocca F 2007 J. Appl. Phys. 101 113510
|
[24] |
Serre C, Calvo-Barrio L, Pérez-Rodríguez A, Romano-Rodríguez A, Morante J R, Pacaud Y, Kögler R, Heera V and Skorupa W 1996 J. Appl. Phys. 79 6907
|
[25] |
Kerdiles S, Hairie A, Rizk R and Guedj C 2001 Phys. Rev. B 63 205206
|
[26] |
Sha Z D, Wu X M and Zhuge L J 2005 Vacuum 79 250
|
[27] |
Dashiell M W, Kulik L V, Hits D A, Kolodzey J and Watson G 1998 Appl. Phys. Lett. 72 833
|
[28] |
Mahmood A, Muhl S, Sansores L E and Andrade E 2000 Thin Solid Films 373 180
|
[29] |
Serre C, Barrio L C, Rodríguez A P, Rodríguez A R, Morante J R, Pacaud Y, Kogler R, Heera V and Skorupa W 1996 J. Appl. Phys. 79 6907
|
[30] |
liveira I C, Massi M, Santos S G, Otani C and Maciel H S 2001 Diam. Relat. Mater. 10 1317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|