Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058105    DOI: 10.1088/1674-1056/23/5/058105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering

Huang Shi-Hua (黄仕华), Liu Jian (刘剑)
Physics Department, Zhejiang Normal University, Zhejiang 321004, China
Abstract  Si-rich Si1-xCx/SiC multilayer thin films are prepared using magnetron sputtering, subsequently followed by thermal annealing in the range of 800-1200 ℃. The influences of annealing temperature (Ta) on the formation of Si and/or SiC nanocrystals (NCs) and on the electrical characteristics of the multilayer film are investigated by using a variety of analytical techniques, including X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectrometry (FT-IR), current-voltage (I-V) technique, and capacitance-voltage (C-V) technique. XRD and Raman analyses indicate that Si NCs begin to form in samples for Ta ≥ 800 ℃. At annealing temperatures of 1000 ℃ or higher, the formation of Si NCs is accompanied by the formation of SiC NCs. With the increase in the annealing temperature, the shift of FT-IR Si-C bond absorption spectra toward a higher wave number along with the change of band shape can be explained by a Si-C transitional phase between the loss of substitutional carbon and the formation of SiC precipitates and a precursor for the growth of SiC crystalline. The C-V and I-V results indicate that the interface quality of Si1-xCx/SiC multilayer film is improved significantly and the leakage current is reduced rapidly for Ta ≥ 1000 ℃, which can be ascribed to the formation of Si and SiC NCs.
Keywords:  SiC      magnetron sputtering      annealing      leakage current  
Received:  08 August 2013      Revised:  31 October 2013      Accepted manuscript online: 
PACS:  81.15.Cd (Deposition by sputtering)  
  78.55.Ap (Elemental semiconductors)  
  68.55.A- (Nucleation and growth)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University, China (Grant No. FDS-KL2011-04), the Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2011R50012), and the Key Laboratory of Zhejiang Province, China (Grant No. 2013E10022).
Corresponding Authors:  Huang Shi-Hua     E-mail:  huangshihua@zjnu.cn
About author:  81.15.Cd; 78.55.Ap; 68.55.A-; 81.40.Ef

Cite this article: 

Huang Shi-Hua (黄仕华), Liu Jian (刘剑) Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering 2014 Chin. Phys. B 23 058105

[1] Cazzanelli M, Navarro-Urriós D, Riboli F, Daldosso N, Pavesi L, Heitmann J, Yi L X, Scholz R, Zacharias M and Gosele U 2004 J. Appl. Phys. 96 3164
[2] Green M A, Cho E C, Cho Y H, Pink E, Trupke T, Lin K L, Fangsuwannarak T, Puzzer T, Conibeer G and Corkish R 2005 Proceeding of the 20th European Photovoltaic Solar Energy Conference, June, 2005, Barcelona, Spain, p. 3
[3] Song D, Cho E C, Conibeer G, Cho Y H, Huang Y, Huang S, Flynn C and Green M A 2007 J. Vac. Sci. Technol. B 25 1327
[4] Zhang Q, Zhang Y M, Yuan L, Zhang Y M, Tang X Y and Song Q W 2012 Chin. Phys. B 21 088502
[5] Zhang F S and Li X R 2011 Chin. Phys. B 20 067102
[6] Daldosso N, Das G, Larcheri S, Mariotto G, Dalba G, Pavesi L, Irrera A, Priolo F and Rocca F 2007 J. Appl. Phys. 101 113510
[7] Wang M H, Li D S, Yuan Z Z, Yang D R and Que D L 2007 Appl. Phys. Lett. 90 131903
[8] Kurokawa Y, Miyajima S, Yamada A and Konagai M 2006 Jpn. J. Appl. Phys. 45 1064
[9] Song D, Cho E C, Conibeer G, Huang Y, Flynn C and Green M A 2008 J. Appl. Phys. 103 083544
[10] Wang Y H, Zhang Y M, Zhang Y M, Zhang L, Jia R X and Chen D 2010 Chin. Phys. B 19 036803
[11] Jiang C W and Green M A 2006 J. Appl. Phys. 99 114902
[12] Song D, Cho E C, Conibeer G, Flynn C, Huang Y and Green M A 2008 Sol. Energy. Mater. Sol. Cells 92 474
[13] Song D, Cho E C, Cho Y H, Conibeer G, Huang Y, Huang S and Green M A 2008 Thin Solid Films 516 3824
[14] Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M and Bl?sing J 2002 Appl. Phys. Lett. 80 661
[15] Conibeer G, Green M A, Corkish R, Cho Y H, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A and Lin K L 2006 Thin Solid Films 511 654
[16] Dhar S, Feldman L C, Wang S, Isaacs-Smith T and Williams J R 2005 J. Appl. Phys. 98 014902
[17] Fernandes M, Vieira M, Rodrignes I and Martins R 2004 Sensor. Actuat. A 113 360
[18] Madani M, Colder H, Portier X, Zellama K, Rizk R and Bouchriha H 2006 Microelectron. J. 37 1031
[19] Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126
[20] Song D Y, Cho E C, Conibeer G, Huang Y D, Flynn C and Green M A 2008 J. Appl. Phys. 103 083544
[21] Lattemann M, Nold E, Ulrich S, Leiste H and Holleck H 2003 Surf. Coat. Tech. 174 365
[22] Wang Y H, Lin J and Huan C H A 2002 Mater. Sci. Eng. B 95 43
[23] Daldosso N, Das G, Larcheri S, Mariotto G, Dalba G, Pavesi L, Irrera A, Priolo F, Lacona F and Rocca F 2007 J. Appl. Phys. 101 113510
[24] Serre C, Calvo-Barrio L, Pérez-Rodríguez A, Romano-Rodríguez A, Morante J R, Pacaud Y, Kögler R, Heera V and Skorupa W 1996 J. Appl. Phys. 79 6907
[25] Kerdiles S, Hairie A, Rizk R and Guedj C 2001 Phys. Rev. B 63 205206
[26] Sha Z D, Wu X M and Zhuge L J 2005 Vacuum 79 250
[27] Dashiell M W, Kulik L V, Hits D A, Kolodzey J and Watson G 1998 Appl. Phys. Lett. 72 833
[28] Mahmood A, Muhl S, Sansores L E and Andrade E 2000 Thin Solid Films 373 180
[29] Serre C, Barrio L C, Rodríguez A P, Rodríguez A R, Morante J R, Pacaud Y, Kogler R, Heera V and Skorupa W 1996 J. Appl. Phys. 79 6907
[30] liveira I C, Massi M, Santos S G, Otani C and Maciel H S 2001 Diam. Relat. Mater. 10 1317
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[13] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[14] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[15] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
No Suggested Reading articles found!