Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058104    DOI: 10.1088/1674-1056/23/5/058104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles

Ningthoujam Surajkumar Singha b, Shougaijam Dorendrajit Singha, Sanoujam Dhiren Meeteia
a Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur, India;
b Department of Physics, Pachhunga University College, College Veng, Aizawl 796001, Mizoram, India
Abstract  We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 ℃. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb3+ doping, and it decreased at higher concentrations of Tb3+ doping after reaching a certain optimum concentration. The PL spectra of Tb3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5D3 - 7F3), 484 nm (5D4 - 7F6), and 530 nm (5D4 - 7F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.
Keywords:  zinc oxide      nanoparticles      photoluminescence      chemical precipitation  
Received:  02 October 2013      Revised:  28 October 2013      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  78.55.Et (II-VI semiconductors)  
Corresponding Authors:  Shougaijam Dorendrajit Singh     E-mail:  dorendrajit@yahoo.co.in
About author:  81.07.Bc; 78.55.Et

Cite this article: 

Ningthoujam Surajkumar Singh, Shougaijam Dorendrajit Singh, Sanoujam Dhiren Meetei Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles 2014 Chin. Phys. B 23 058104

[1] Li G, Lu X, Su C and Tong Y 2008 J. Phys. Chem. C 112 2927
[2] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[3] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947
[4] Xu L, Su Y, Chen Y, Xiao H, Zhu L, Zhou Q and Li S 2005 J. Phys. Chem. B 109 5491
[5] Rau U and Schmidt N 2001 Thin Solid Films 387 141
[6] Dwivedi C and Dutta V 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 015011
[7] Wang J C 2013 Chin. Phys. B 22 068504
[8] Wang X P, Wang Z, Wang L J and Mei C Y 2011 Chin. Phys. B 20 105203
[9] Gong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhang K X, Liu M Y, Zhu H and Zhou J F 2012 Chin. Phys. B 21 068101
[10] Zhao S, Wang L, Yang L and Wang Z 2010 Physica B 405 3200
[11] Yang L, Tang Y H, Hu A P, Chen X H, Liang K and Zhang L D 2008 Physica B 403 2230
[12] Leiter F, Alves H, Pfisterer D, Romanov N G, Hofmann D M and Meyer B K 2003 Physica B 340-342 201
[13] Jokela S J, McClumskey M D and Lynn K G 2003 Physica B 340-342 221
[14] Bai X D, Wang E G, Gao P X and Wang Z L 2003 Nano Lett. 3 1147
[15] Ganesan P G, McGuire K, Kim H, Gothard N, Mohan S, Rao A M and Ramanath G 2005 J. Nanosci. Nanotechnol. 5 1125
[16] Bailey R E and Nie S 2003 J. Am. Chem. Soc. 125 7100
[17] Wang Y S, Thomas P J and O'Brien P 2006 J. Phys. Chem. B 110 21412
[18] Sernelius B E, Berggren K F, Jin Z C, Hamber I and Granqvist C G 2008 Phys. Rev. B 37 10244
[19] Lin J, Huang Y, Zhang J, Gao J, Ding X, Huang Z and Tang C 2007 Chem. Mater. 19 2585
[20] Zhou H, Yi D, Yu Z, Xiao L and Li J 2007 Thin Solid Films 515 6909
[21] Pal P P and Manam J 2013 Nanosystems: Phys. Chem. Math. 4 395
[22] Sharma P K, Dutta R K and Pande A C 2010 J. Coll. Int. Sc. 345 149
[23] Mishra A K, Chaudhuri S K, Mukherjee S, Priyam A, Saha A and Das D 2007 J. Appl. Phys. 102 103514
[24] Devi S K L and Sudarsanakumar K 2010 J. Lumin. 130 1221
[25] Chakrabarti S, Ganguli D and Chaudhuri S 2003 J. Phys. D: Appl. Phys. 36 146
[26] Zhou H, Alves H, Hofman D M, Kriegsens W, Meyer B K, Kaezmarezyk G and Hoffmann A 2002 Appl. Phys. Lett. 80 210.
[27] Liu S M, Liu F Q, Guo H Q, Zhang Z H and Wang Z G 2000 Phys. Lett. A 271 128
[28] Mo C M, Li Y H, Liu Y S, Zhang Y and Zhang L D 1998 J. Appl. Phys. 83 4389
[29] Pal P P and Manam J 2013 Materials Sci. Eng. B 178 400
[30] Lin H Y, Cheng C L, Lin Y S, Hung Y, Mou C Y and Chen Y F 2011 Nanoscale Research Lett. 6 503
[31] Panigrahi B S 1999 J. Lumin. 82 121
[32] Dincer O and Ege A 2013 J. Lumin. 138 174
[33] Huong T T, Anh T K, Khuyen H T, Hien P T and Minh L Q 2012 Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 015010
[34] Goswami N and Sharma D K 2010 Physica E 42 1675
[35] Djurisic A B, Ng A M C and Chen X Y 2010 Progress in Quantum Electronics 34 191
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[7] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[12] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[13] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
No Suggested Reading articles found!