Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050308    DOI: 10.1088/1674-1056/23/5/050308
GENERAL Prev   Next  

Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates

Zhou Lan (周澜)
College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of the Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We present a highly efficient entanglement concentration protocol (ECP) for a four-electron system in a less-entangled cluster state. In this ECP, we only require one pair of less-entangled electron cluster states and one ancillary electron to complete the task. With the help of the controlled-not (CNOT) gate, the concentrated maximally entangled state can be retained for further application with some success probability. On the other hand, the discarded items can be reused to obtain a high success probability. All the features make this ECP useful in the current quantum information field.
Keywords:  quantum communication      entanglement      entanglement concentration  
Received:  18 August 2013      Revised:  06 October 2013      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 11347110), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology of the Ministry of Education, Nanjing University of Posts and Telecommunications, China (Grant No. NYKL201303), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213054), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Zhou Lan     E-mail:  zhoul@njupt.edu.cn
About author:  03.67.Bg; 03.65.Yz; 03.67.Hk

Cite this article: 

Zhou Lan (周澜) Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates 2014 Chin. Phys. B 23 050308

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[3] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[6] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[7] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[8] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[9] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[10] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[11] Gu B, Mu L L, Ding L G, Zhang C Y and Li C Q 2010 Opt. Commun. 283 3099
[12] Ekert A K 1991 Phys. Rev. Lett. 67 661
[13] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[14] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[15] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[16] Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
[17] Deng F G, Long G L and Chen P 2006 Chin. Phys. 15 2228
[18] Long G L and Xiao L 2004 Phys. Rev. A 69 052303
[19] Wei H R and Deng F G 2013 Phys. Rev. A 87 022305
[20] Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett. 110 190501
[21] Wei H R and Deng F G 2013 Opt. Express 21 17671
[22] Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
[23] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[24] Pan J W, Simon C and Zellinger A 2001 Nature 410 1067
[25] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[26] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 012307
[27] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[28] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
[29] Sheng Y B, Long G L and Deng F G 2012 Phys. Lett. A 376 314
[30] Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
[31] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[32] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[33] Wang C, Sheng Y B, Li X H, Deng F G and Long G L 2009 Science in China Series E 52 3464
[34] Deng F G 2011 Phys. Rev. A 83 062316
[35] Deng F G 2011 Phys. Rev. A 84 052312
[36] Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
[37] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[38] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[39] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[40] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[41] Sheng Y B, Deng F G and Zhou H Y 2010 Quant. Inf. Comput. 10 272
[42] Deng F G 2012 Phys. Rev. A 85 022311
[43] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[44] Cao C, Wang C, He L Y and Zhang R 2013 Opt. Exp. 21 4093
[45] Wang C 2012 Phys. Rev. A 86 012323
[46] Sheng Y B and Zhou L 2013 Entropy 15 1776
[47] Zhao J, Li W D and Gu Y J 2013 Chin. Phys. Lett. 30 070302
[48] Ren B C, Du F F and Deng F G 2013 Phys. Rev A 88 012302
[49] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[50] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[51] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[52] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[53] Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
[54] Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quant. Inf. Process. 11 431
[55] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
[56] Zhou L 2013 Quant. Inf. Process. 12 2087
[57] He L Y, Cao C and Wang C 2013 Opt. Commun. 298 260
[58] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[59] Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
[60] Liu D, Cong Y and Ma W 2012 Physica Scripta 86 045006
[61] Choudhury B S and Dhara A 2013 Quant. Inf. Process. 12 2577
[62] Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
[63] Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 28 1250214
[64] Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
[65] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[66] Ionicioiu R 2007 Phys. Rev. A 75 032339
[67] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
[68] Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quant. Inf. Process. 12 855
[69] Sheng Y B, Deng F G, Zhao B K, Wang T J and Zhou H Y 2009 Eur. Phys. J. D 55 235
[70] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[71] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[72] Knill E, Laflamme R and Miburn G J 2001 Nature 409 46
[73] Ionicioiu R and D'Amico I 2003 Phys. Rev. B 67 041307
[74] Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[75] Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!