|
|
Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates |
Zhou Lan (周澜) |
College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of the Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We present a highly efficient entanglement concentration protocol (ECP) for a four-electron system in a less-entangled cluster state. In this ECP, we only require one pair of less-entangled electron cluster states and one ancillary electron to complete the task. With the help of the controlled-not (CNOT) gate, the concentrated maximally entangled state can be retained for further application with some success probability. On the other hand, the discarded items can be reused to obtain a high success probability. All the features make this ECP useful in the current quantum information field.
|
Received: 18 August 2013
Revised: 06 October 2013
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 11347110), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology of the Ministry of Education, Nanjing University of Posts and Telecommunications, China (Grant No. NYKL201303), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213054), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Zhou Lan
E-mail: zhoul@njupt.edu.cn
|
About author: 03.67.Bg; 03.65.Yz; 03.67.Hk |
Cite this article:
Zhou Lan (周澜) Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates 2014 Chin. Phys. B 23 050308
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[3] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[4] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[5] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[6] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
|
[7] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[8] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[9] |
Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[10] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[11] |
Gu B, Mu L L, Ding L G, Zhang C Y and Li C Q 2010 Opt. Commun. 283 3099
|
[12] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[13] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[14] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[15] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[16] |
Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
|
[17] |
Deng F G, Long G L and Chen P 2006 Chin. Phys. 15 2228
|
[18] |
Long G L and Xiao L 2004 Phys. Rev. A 69 052303
|
[19] |
Wei H R and Deng F G 2013 Phys. Rev. A 87 022305
|
[20] |
Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett. 110 190501
|
[21] |
Wei H R and Deng F G 2013 Opt. Express 21 17671
|
[22] |
Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
|
[23] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[24] |
Pan J W, Simon C and Zellinger A 2001 Nature 410 1067
|
[25] |
Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
|
[26] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 012307
|
[27] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
|
[28] |
Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
|
[29] |
Sheng Y B, Long G L and Deng F G 2012 Phys. Lett. A 376 314
|
[30] |
Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
|
[31] |
Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
|
[32] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
[33] |
Wang C, Sheng Y B, Li X H, Deng F G and Long G L 2009 Science in China Series E 52 3464
|
[34] |
Deng F G 2011 Phys. Rev. A 83 062316
|
[35] |
Deng F G 2011 Phys. Rev. A 84 052312
|
[36] |
Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[37] |
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
|
[38] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[39] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[40] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[41] |
Sheng Y B, Deng F G and Zhou H Y 2010 Quant. Inf. Comput. 10 272
|
[42] |
Deng F G 2012 Phys. Rev. A 85 022311
|
[43] |
Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
|
[44] |
Cao C, Wang C, He L Y and Zhang R 2013 Opt. Exp. 21 4093
|
[45] |
Wang C 2012 Phys. Rev. A 86 012323
|
[46] |
Sheng Y B and Zhou L 2013 Entropy 15 1776
|
[47] |
Zhao J, Li W D and Gu Y J 2013 Chin. Phys. Lett. 30 070302
|
[48] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev A 88 012302
|
[49] |
Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
|
[50] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[51] |
Gu B 2012 J. Opt. Soc. Am. B 29 1685
|
[52] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[53] |
Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
|
[54] |
Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quant. Inf. Process. 11 431
|
[55] |
Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
|
[56] |
Zhou L 2013 Quant. Inf. Process. 12 2087
|
[57] |
He L Y, Cao C and Wang C 2013 Opt. Commun. 298 260
|
[58] |
Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
|
[59] |
Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
|
[60] |
Liu D, Cong Y and Ma W 2012 Physica Scripta 86 045006
|
[61] |
Choudhury B S and Dhara A 2013 Quant. Inf. Process. 12 2577
|
[62] |
Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
|
[63] |
Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 28 1250214
|
[64] |
Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
|
[65] |
Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
|
[66] |
Ionicioiu R 2007 Phys. Rev. A 75 032339
|
[67] |
Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
|
[68] |
Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quant. Inf. Process. 12 855
|
[69] |
Sheng Y B, Deng F G, Zhao B K, Wang T J and Zhou H Y 2009 Eur. Phys. J. D 55 235
|
[70] |
Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
|
[71] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[72] |
Knill E, Laflamme R and Miburn G J 2001 Nature 409 46
|
[73] |
Ionicioiu R and D'Amico I 2003 Phys. Rev. B 67 041307
|
[74] |
Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
|
[75] |
Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|